

r-1
l

CIS COBOL with ANIMATOR and FORMS-2 User Guide

Part no 4 09000
Issue no 1
Date Febr uar y 1984

'

© Copyright Acorn Computers Limited 1984
© Copyright Micro Focus Limited 1978, 1980, 1982, 1983

Neither the whole nor any part of the information contained in, or the
product described in, this manual may be adapted or reproduced in any
material form except with the prior written approval of Acorn Computers
Limited (Acorn Computers).

The product described in this manual and products for use with it are
subject to continuous development and improvement. All information of
a technical nature and particulars of the product and its use (including
the information and particulars in this manual) are given by Acorn
Computers in good faith. However, it is acknowledged that there may be
errors or omissions in this manual, A list of details of any amendments
or revisions to this manual can be obtained upon request from Acorn
Computers Technical Enquiries. Acorn Computers welcome comments and
suggestions relating to the product and this manual.

All correspondence should be addressed to :

Technical Enquiries
Acorn Computers Limited
Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN

CIS COBOL, LEVEL II COBOL, FORMS-2 ANIMATOR and FILESHARE are trademarks
of Micro Focus Ltd
CP/M® and CP/M-86® are registered trademarks of Digital Research Inc
Z80® is a registered trademark of Zilog Inc
ADM-3A™ is a trademark of Lear Siegler Inc
8080® is a registered trademark of Intel Corp

First published 1984
Published by Acorn Computers Limited

--

--
CONTENTS

2

3

4

Getting started with CIS COBOL on CP/M
(detailed contents list on paie 1-2)

CIS COBOL operating guide for CP/M
Introduction
Compiler controls
Run time system controls
CIS COBOL application design considerations
Configuration utility
Incorporating FORMS-2 utility program output
Using the ANIMATOR utility program
(detailed contents list on page 2-6)

CIS COBOL ANIMATOR operating guide
Introduction
Preparing for animation
Operating commands
(detailed contents list on page 3- 4)

CIS COBOL FORMS-2 utility manual
Introduction
Initialisation phase
Work phase
Data descriptions
The check-out program
Screen image file
FORMS-2 user screen generation example
Index program
User index program example
(detailed contents list on page 4-4)

1-1

2-1
2-13
2-21
2-29
2-43
2-64
2-68
2-70

3-1
3-6
3-13
3-14

4-1
4-8
4-9
4-23
4-38
4-42
4-45
4-48
4-57
4-66

l1&ii,\1
i

illQ1
I

GETTING STARTED
WITH

CISCOBOL
ONCP/M

-

-

-

-

WELCOME TO CIS COBOL

This booklet is provided to start you off using CIS COBOL
computer.

CONTENTS

INITIAL CONSIDERATIONS

CIS COBOL START UP

COMPILING AND RUNNING THE DEMONSTRATION PROGRAMS

CREATING A CIS COBOL SOURCE PROGRAM

© Copyright 1982 Micro Focus

1 - 2

on your own

Page

1-3

1-5

1-7

1-12

!~sue l

INITIAL CONSIDERATIONS

RUNNING CP/M

This handbook assumes that you have already familiarised yourself with CP/M.
Full information on installing and running CP/M is contained in the CP/M
manuals .

If you have not already done so, read through and follow the i nstructions
contained in your CP/M manuals.

You will also need to us e some of the software utilities described, in
particular ·the diskett e form a tting utility, the CP/M Sy s tem Copy utilit y ,
the diskette copy (duplication) program, the file copy utility and a
suitable text-file editor.

1 - 3

CHECKING THE CONTENTS OF THIS PACK

We suggest that you now quickly check that your pack contains all the items
it should. Do it before anything gets lost or borrowed.

In this binding, you should find in addition to- this guide:

CIS COBOL Operating Guide for CP/M.

ANIMATOR Operating Guide.

FORMS-2 Utility Manual.

Also you will find the software on diskettes, labelled:

CIS COBOL

with a serial number printed on the label, in the format:

URN: xx/nnnn/Bx

where nnnn is a number between 0001 to 9999 and xis a unique identifier.

This URN (User Reference Number) is a serial number which is unique to you
and is embedded in the software on your disks. You will need to quote this
reference if you call or write to Acorn Computers for technical support, so
make sure you know where it is.

The serial number of each of your disk label(s) should be the same as that
on your Warranty Acknowledgement form on the CIS COBOL Release Disk sheet.
Check now that it is. Please read this important paperwork enclosed with
your disk and fill in NOW the Warranty Acknowledgement form and Software
Licence Agreement. It will enable us to mail new product information and
helpful newsletters to you as they become available, and also to help you
individually if you need it through our Technical Support facilities.

In the event that your pack does not contain everything described here,
return it to your supplier who will take appropriate action.

1 - 4

-
-

--
--
--

CIS COBOL START UP

GETTING READY TO RUN CIS COBOL

Your CIS COBOL software is supplied on diskettes which do not contain the
CP/M bootstrap. The first thing to do therefore is to create a working
CIS COBOL system by copying your CIS COBOL masters onto "working" diskettes.

You will need blank diskettes prepared to receive CIS COBOL by following the
instructions for initializing new CP/M diskettes given in the CP/M Manual.

Copy both the CIS COBOL software and the CP/M "bootstrap" tracks onto your
working diskettes. One way of doing this is as follows:

With your CP/M master system disk in drive A, run the CP/M "System copy"
utility to put the CP/M bootstrap on each of the working disks. Then use
the file-copy program to copy the CIS COBOL Master Diskette(s) in turn onto
your working diskette(s), as described in your CP/M manual. Alternatively,
you can duplicate your CIS COBOL master diskette (using the diskette copy
program) and then use the CP/M "System Copy" Utility program.

Label your working diskettes clearly and replace your CIS COBOL Master(s) in
·the sleeve in which they came and store them in a safe place for back-up
purposes.

CHECKING THE CONTENTS OF YOUR DISKS

Now quickly check the contents of each of your newly created disks, using
the CP/M command DIR. The contents should include:

COMPILER RUN-TIME CONFIGURATOR
SYSTEM UTILITY

COBOL.COM RUNA.COM CONFIG.COM
COBOL.101
COBOL.102
COBOL. 103
COBOL. 104
COBOL.MSG

1 - 5

DEMONSTRATION RUN-TIME UTILITY
PROGRAMS SUBROUTINES PROGRAMS

Pl.CBL CALL.ASM FILEMARK. COM
STOCKl.CBL CALL.HEX
STOCK2.CBL CALL.PRN

CONFIGURATION

CIS COBOL is supplied with a configurator utility program called CONFIG.
Not only are there many different systems available for CIS COBOL to run in
under CP/M but there are many different CRT's that can be used with these
systems.

CONFIG enables you to tailor the CIS COBOL run time system to a specific
computer and CRT by answering a series of questions that are
self-explanatory via the CRT. This has already been done for your system
and you need take no further configuration action.

CONFIG functions are:-

1.

2.

3.

To tailor the Run Time System (RTS) (or FORMS2.COM or any "linked"
programs you have created), so that the interactive features of CIS
COBOL can be used with your CRT.

Optionally to reserve an area within the RTS into which you may enter
assembler or other language subroutines for use by the CALL statement
in a CIS COBOL program. (You are unlikely to want to do this at this
early stage).

If you wish, to form a library of up to 10 CRT definitions which may be
used to automatically configure an existing RTS.

Detailed instructions for running CONFIG and an explanation of the questions
asked are contained in your CIS COBOL Operating Guide.

1 - 6

-

COMPILING AND RUNNING THE DEMONSTRATION PROGRAMS

We have provided you with three domonstration programs. The source code for
these programs is on the COBOL disk, in the files:

PI.CBL

STOCKl.CBL

STOCK2.CBL

PI.CBL
STOCKI .CBL
STOCK2.CBL

This program simply displays on the screen the
mathematical constant PI to 12 decimal places and is the
basic screen test for CIS COBOL DISPLAY.

This program should not be run until you are confident
that PI.CBL is working correctly. It is the test for
CIS COBOL ACCEPT, which provides the basic interactive
functions, and Indexed file Input-Output.

This program uses a data file created by running STOCKI
and hence is dependent on having run that program
successfully. The source code contains a deliberate
error, which does not affect the program's execution but
is there as an example of a CIS COBOL error message.

These programs introduce you to the simple compile and run development cycle
of CIS COBOL. They also give an indication of the way in which very simple
CIS COBOL programs can have sophisticated screen and file handling features.

PI.CBL

To compile PI, load into Drive A a disk which contains the file PI.CBL and
also has some spare capacity for two other files which will be created
during the compilation.

Now either reset the system or perform a warm boot by keying ctrl-C.

When you get the prompt:

A>

key in the command line:

COBOL PI. CBL

and press RETURN.

1 - 7

The compiler will not start executing. The first lines displayed
immediately tell you that the compiler has been loaded and is executing:

**CIS COBOL V4.5 COPYRIGHT 1978, 1982 MICRO FOCUS LTD
**COMPILING PI.CBL

When the compilation is finished, the compiler reports the results as
follows:

**ERRORS=0000 DATA=nnnnn CODE=nnnnn DICT=nnnnn:nnnnn/nnnnn GSA FLAGS=OFF

Note: the number of bytes of dictionary space remaining depends on the
available RAM of your computer.

The compiler will have generated two files: PI.LST, which is the list file,
and PI.INT, which contains the intermediate code. You can examine the list
file with the CP/M editor . Alternatively, we recommend that you list it out
to the screen with the command:

A>TYPE PI. LST

and press RETURN.

If you have a line printer, you can obtain a printout by using the CP/M file
copy utility. The command would be:

A>PIP LST:=PI.LST

To run the compiled PI program, load the Run Time System disk in Drive B,
key ctrl-C, and execute the intermediate code by typing:

A>B:RUNA A:PI.INT

and pre ss RETURN.

After a few moments the RTS identification line will be displayed then you
will see the screen clear, the cursor will appear at the top left, and the
"PI" screen will be displayed as illustrated below for the final term.

CALCULATION OF PI

NEXT TERM IS 0.000000000000

PI IS 3.141592653589

1 - 8

-

STOCKl .CBL

To compile STOCKl.CBL, follow the procedures outlined above for PI.CBL,
substituting "STOCKl" for "PI".

Then run STOCKl.INT by keying the command line:

A>B:RUNA A:STOCKl.INT

then press RETURN.

After a few moments the RTS identification line will be displayed, you will
see the screen clear, the cursor will appear at the top left, and then the
"STOCKl" screen will be displayed as illustrated below.

STOCK CODE < >

DESCRIPTION < >

UNIT SIZE < >

At this point, the program is waiting for you to enter data via the keyboard
using your normal cursor movement controls and the "accept-data" key
(usually RETURN); as CONFIGured into your RTS.

Before entering any data, try moving the cursor around the screen using
these keys.

Once the cursor is operating correctly, you may begin to enter data. The
final two functions that you can check out are:

left zero fill, which may be tested using the '.' on data entered
into UNIT SIZE: keying <l. > should result in <0001>

"accept-data", to enter your first screen-full of data (usually
the RETURN key).

1 - 9

There are two cases when pressing the RETURN key will not result in the data
being written away;

If the UNIT SIZE is not numeric;

If a record with this STOCK CODE number already exists on the
file.

Reference to the listing of the source program will show you why.
The relevant statements are:

"IF CRT-UNIT-SIZE NOT NUMERIC GO TO CORRECT-ERROR."
and ~

"WRITE STOCK-ITEM; INVALID GO TO CORRECT-ERROR."

Thus, case 1) above is the result of an explicit test by the programmer for
valid data input. Case 2) arises from the fact that the STOCK CODE is being
used as the record key and duplicate deys are not permitted in the Indexed
Sequential file to which these records are being written.

In order to subsequently run the STOCK2 program against the data files
produced by STOCKl, you should make a note of the STOCK CODE numbers you
enter to the program. We recommend you use six sequential numbers, say 11
through 16, entered in random order.

Important!

To terminate the run cleanly, you must key spaces into the STOCK CODE field
and hit the "accept-data" key. The program tests for this end-of-run signal
in the line:

"IF CRT-STOCK-CODE SPACE GO TO END-IT."

1 - 10

STOCK2.CBL

Compile STOCK2 in the normal way. You will see that an error is displayed
on the screen. This is a deliberate error inserted into the program to
demonstrate CIS COBOL's method of handling compilation errors. This error
does not affect the operation of the program.

Run the program, and retrieve the records you entered to the file using
STOCKl, by entering into the STOCK CODE field the values you previously
used. Again, spaces in the STOCK CODE field must be used to terminate the
run.

NOTE:
A run-time error may occur if the files STOCK.IT and STOCK.IDX,
generated and referen ce d by STOCKl and STOCK2 have been corrupted; for
example by a previous run of STOCKl or STOCK2 which was incorrectly
terminated. To recover from this situation use the CP/M ERA command to
delete only the two files STOCK.IT and STOCK.IDX from your disk, and
then start again with the STOCKl program.

1 - 11

~
!

CREATING A CIS COBOL SOURCE PROGRAM

We suggest that the next step should be to write a small COBOL program of
your own, then key it in using whatever editor is available on your system.
Then compile and run it.

DO NOT USE THE TAB KEY when keying in a CIS COBOL program; it is not an
ANSI character and is not accepted by the CIS COBOL compiler. Use only
spaces to format the source program.

If you are not in the mood to write your own program, another way of
creating a CIS COBOL source program is to use the CI S COBOL uti li ty FORMS-2.

To help you use CIS COBOL remember you are provided with:

Operating Guide - how to use your CIS COBOL
ANIMATOR Operating Guide - describes the ANIMATOR debugging facility
FORMS-2 Utility Manual - describes the FORMS-2 screen handling facility

Don't forget to fill in your user registration form if you haven't already
done so.

1 - 12

-I

;~·

(iiii\
I

(iiii\
i

Micro Focus Ltd.

CIS COBOL

OPERATING GUIDE

For Use With the CP/M Operating System

Version 4.5

Issue 8
April 1982

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL Progranuning Language Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection herewith.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark for Sperry Rand Corporation) Progranuning for the

Univac (R) I and II, Data Automation Systems copyrighted 1958, 1959, by

Sperry Rand Corporation;
copyrighted 1959 by IBM;
Minneapolis-Honeywell.

IBM Conunercial Translator Form No.
FACT, DS127A5260-2760, copyrighted

F28-8013,
1960 by

have specifically authorized the use of this material in whole or in part,
in the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

2 - 2

-

--

~.

PREFACE

This manual describes operating procedures for the CP/M resident releases of
the CIS COBOL Compiler and run-time libraries. The compiler converts
CIS COBOL source code into an intermediate code which is then interpreted by
the Run-Time System. The manual describes the steps needed to compile a
program and then execute the compiled program, including all necessary
run-time requirements. Operation of the run-time Debug package is also
included.

MANUAL ORGANIZATION

Chapters l through 4 of this manual describe compiler features and general
procedures for J oading and execution of programs including linkage of
assembler programs. Chapter 5 describes the operation of the configuration
utility program CONFIG. Chapters 6, 7 and 8 describe the use of the optional
additionill software products with CIS COBOL.

The appendices provide summarized information for reference purposes and
give configuration information for various run-time environments. Some
appendices are omitted because they are not pertinent to this version of CIS
COBOL.

AUDIENCE

This manual is intended for personnel already familiar with COBOL usage on
other equipment.

This manual contains the following chapters and appendices:

"Chapter
CIS COBOL
provided
linking,

1. Introduction", which gives a general description of the
system, its input and output files, and the run-time libraries

with the compiler, plus the step-by-step outline of compilation,
locating and executing of sample interactive programs.

"Chapter 2. Compiler Controls", which describes compiler commands,
directives and listing formats.

"Chapter 3.
for running
debugging.

"Run Time System Controls", which gives general instructions
programs, console operation, CRT screen handling and interactive

"Chapter 4. Program Design Considerations", which describes the facilities
available to overlay programs and invoke other COBOL programs or programs
written in other languages from a main program.

"Chapter 5. CONFIG Utility", which gives the objectives of the CONFIG
Utility, instructions for configuring standard and non-standard CRTs, and
instructions for configuring run-time subroutines.

"Chapter 6. Incorporating FORMS-2 Utility Output", which describes the use
of the FORMS-2 screen formatting utility programs output.

2 - 3

"Chapter 7. Using the ANIMATOR Utility Program", which enables debugging of
a COBOL program interactively on the screen at COBOL source code level.

"Appendix A. Summary of Compiler and Run Time Directives", summarizes the
compiler directives available in the CIS COBOL compiler.

"Appendix B. Compile-Time Errors", which lists all errors that can be
signalled during program compilation.

"Appendix C. Run-Time Errors", which lists all errors that can be signalled
during program execution.

"Appendix D. Operating Systems Errors", which is a listing of the error
messages issued by the CP/M Operating System.

"Appendix E. Interactive Debug Command Summary", which summarizes the
commands that can be used with the CIS COBOL Interactive Debug program.

"Appendix F. CP/M Disk Files", which is a description of file naming
conventions and formats used by CIS COBOL under CP/M.

"Appendix H. Exampfe Configuration specifying Tab Stop Modification", which
is a typical screen conversation.

"Appendix J. Example Configuration specifying User Subroutines", which is a
typical screen conversation.

"Appendix K. Example Configuration in which No CRT Tailoring is Performed",
which is a typical screen conversation to configure a system without CRT
tailoring.

"Appendix M. Example Run Time Subroutines", which contains assembler
listings of typical supplied sample subroutines.

"Appendix N. Example Use of Run Time Subroutines", which is an example of
the way in which the supplied CALL code routines can be used.

"Appendix P. Constraints", which summarises constraints to be when
programming using this release of CIS COBOL.

2 - 4

-
NOTATION IN THIS MANUAL

Throughout this manual the following notation is used to describe the format
of data input or output:

l.

2.

3.

All words printed in small letters are generic terms representing names
which will be devised by the programmer.

When material is enclosed in square brackets [], it is an indication
that the material is an option which may be included or omitted as
required.

The symbol << after a CRT entry or command format in this manual
indicates that the CR (carriage return) or equivalent data input
terminator key must be pressed to enter the command.

Headings are presented in this manual in the following order of importance:

CHAPTER n
Chapter Heading

TITLE

ORDER
ORDER
Order
Order

ONE HEADING ~
TWO tlEADING Text
Three Heading

3 lines down

Four Heading

Order Five Heading: Text on same line

Numbers one (1) to nine (9) are written in text as letters e.g. one.
Numbers ten (10) upwards are written in text as numbers e.g. 12

RELATED PUBLICATIONS

For details of the CIS COBOL Language, refer to the document:

CIS COBOL Language Reference Manual
For details of the CP/M Operating System, Messages, and File Structures
refer to the CP/M Operating System User manuals.

The utility programs ANIMATOR and FORMS-2 are supplied with user manuals as
follows:

CIS COBOL ANIMATOR Operating Guide
CIS COBOL FORMS-2 Utility Manual

2 - 5

TABLE OF CONTENTS

CHAPTER l

INTRODUCTION

GENERAL DESCRIPTION

GETTING STARTED WITH CIS COBOL

ISSUE DISK
THE COMPILER
THE RUN TIME SYSTEM
CONFIGURATION
THE FORMS PROGRAM
THE DEMONSTRATION PROGRAMS
THE RUN TIME SUBROUTINES
FIRST STEPS

Initialization
Disk Initialization
Compilation
Configuring the Run Time System
Running the Demonstration Programs

Calculation of ~ (PI)
Stock Control Program One

(Cursor Control)
Stock Control Program Two

(Data Input)

PROGRAM DEVELOPMENT CYCLE

PROGRAM PREPARATION CONSIDERATIONS
PROGRAM DESIGN CONSIDERATIONS

CHAPTER 2

COMPILER CONTROLS

COMMAND LINE SYNTAX

COMPILER DIRECTIVES

2 - 6

2-13

2-14

2-14
2-14
2-15
2-15
2-15
2-15
2-15
2-15

2-15
2-15
2-16
2-17
2-17

2-17

2-17

2-18

2-18

2-20
2-20

2-21

2-21

FLAG
NO FLAG
RE SEQ
NO INT
NOLI ST
COPYLIST
NO FORM
ERRLIST
LIST
FORM
NO ECHO
NO REF
DATE
QUIET
PAGETHROW
ANIM
FILES HARE
RESTRICT
COMMIT
DERES TRI CT
EXCLUDED COMBINATIONS

SUMMARY INFORMATION ON CRT
LISTING FORMATS

CHAPTER 3
RUN TIME SYSTEM CONTROLS

RUN TIME DIRECTIVES

COMMAND LINE SYNTAX
-V (Version) Parameter
+A (Animator) Parameter
Load Parameter
Switch Parameter
Standard ANSI COBOL Debug Switch Parameter
Link Parameter
Program Parameters

COMMAND LINE EXAMPLES

INTERACTION IN APPLICATION PROGRAMS

CRT SCREEN HANDLING
Screen Layout and Format Facilities
Cursor Control Facilities

INTERACTIVE DEBUGGING

THE P COMMAND
THE G COMMAND
THE X COMMAND

2 - 7

2-21
2-22
2-22
2-22
2-22
2-22
2-22
2-22
2-22
2-23
2-23
2-23
2-23
2-23
2-23
2-24
2-24
2- 24
2-24
2-24
2-24

2-25
2-26

2-29

2-29
2-29
2-29
2-29
2-30
2- 31
2-31
2-32

2-3 2

2-34

2-34
2- 34
2-35

2-36

2-37
2-37
2-38

- \

THE A COMMAND
THE S COMMAND
THE '.' COMMAND
THE T COMMAND
DEBUG MACRO COMMANDS

The L Command
The~ Command
The C Command
The Command

CHAPTER 4

CIS COBOL APPLICATION DESIGN CONSIDERATIONS

CIS COBOL APPLICATION DESIGN FACILITIES

INTER-PROGRAM COMMUNICATION (CALL)
SEGMENTATION (OVERLAYING)
CHAINING

INTER-PROGRAM COMMUNICATION

FORMi\T OF CIS COBOL "CALL"

SEGMENTATION
CHAINING
MEMORY LAYOUT
OPERATIONAL FEATURES

RUN TIME COBOL PROGRAM LINKAGE
EXAMPLE LINKAGE

RUN TIME SUBROUTINES (IN ASSEMBLER
OR NON-COBOL LANGUAGES)

RESERVING SPACE FOR USER SUBROUTINES
FORMAT OF RUN-TIME SUBROUTINE AREA
PARAMETER PASSING TO RUN-TIME SUBROUTINES
PLACEMENT OF SUBROUTINES IN THE SUBROUTINE AREA
SAMPLE RUN WITH RUN-TIME SUBROUTINES
ASSEMBLER SUBROUTINES PROVIDED

The CHAIN Subroutine
The PEEK Subroutine

,The POKE Subroutine
The GET Subroutine
The PUT Subroutine
The ABSCAL Subroutine
The File Name Manipulation Routines SPLIT

and JOIN

2 - 8

2-39
2-39
2-39
2-40
2-40

2-41
2-41
2-41
2-41

2-43

2-43
2-43
2-43

2-44

2-45

2-45
2-46
2-47
2-,\8

2-49-
2-5<.'

2-51
2-51
2-51
2-52
2-52
2-53
2-54

2-55
2-56
2-57
2-57
2-58
2-60

2-61

CHAPTER 5

CONFIGURATION UTILITY

OBJECTIVES
USING CONFIG
RUN TIME SUBROUTINES

MEMORY MANAGEMENT CONSIDERATIONS

CHAPTER 6

INCORPORATING FORMS-2 UTILITY PROGRAM OUTPUT

INTRODUCTION
SCREEN LAYOUT FACILITY

MAJOR FACILITIES
CIS COBOL PROGRAMMING FOR FORMS-2 SCREEN LAYOUT

GENERATED PROGRAMS

CIS COBOL PROGRAMMING FOR FORMS-2 GENERATED FILES

CHAPTER 7

USING THE ANIMATOR UTILITY PROGRAM

COMPILATION

THE ANIM COMPILER DIRECTIVE

RUNNING PROGRAMS WITH ANIMATOR

THE +A RUN COMMAND PARAMETER
MEMORY MANAGEMENT CONSIDERATIONS

2 - 9

2-64
2-64
2-66

2-67

2-68
2-68

2-68
2-68

2-69

2-69

2-71

2-71

2-71

2-71
2-72

-_,

-
lllm!,\

-.,
~

,.;,,

*I

~

-. ,

19\,

-\

-,

~

1111'1!\

APPENDIX A

SUMMARY OF COMPILER AND RUN-TIME DIRECTIVES

APPENDIX B

COMPILE TIME ERRORS

APPENDIX C

RUN TIME ERRORS

APPENDIX D

OPERATING SYSTEM ERRORS

APPENDIX E

INTERACTIVE DEBUG COMMAND SUMMARY

APPENDIX F

CP/M DISK FILES

APPENDIX H

EXAMPLE CONFIGURATION
SPECIFYING TAB STOP MODIFICATION

APPENDIX J

EXAMPLE CONFIGURATION
SPECIFYING USER SUBROUTINES

APPENDIX K

EXAMPLE CONFIGURATION IN WHICH
NO CRT TAILORING IS PERFORMED

2 - 10

APPENDIX M

EXAMPLE RUN TIME SUBROUTINES

APPENDIX N

EXAMPLE USE OF RUN TIME SUBROUTINES

APPENDIX P

CONSTRAINTS

-1

2 - 11

Table

1-1
2-1
3-1
3-2

1-1
3-1
4-1
4-2

TABLES

Title

Issue Disk Contents
Excluded Combinations of Directives
Optional Modules by Load Parameter
CRT Cursor Control Keys

ILLUSTRATIONS

Title

Program Development Cycle
Run Time System Memory Layout
Sample CALL Tree Structure
Memory Layout Using Segmentation and
Inter-Program Communication

2 - 12

2-14
2-25
2-30
2-35

2-19
2-30
2-44
2-45

CHAPTER 1

INTRODUCTION

GENERAL DESCRIPTION

COBOL (COmmon Business Oriented Language) is the most widely and extensively
used language for the programming of commercial and administrative data
processing.

CIS COBOL is a Compact, Interactive and Standard COBOL language system
designed for use on microprocessor based computers and intelligent terminals
under control of the CP/M Operating System. It is designed to run on any
48K byte microcomputer system with CRT and floppy diskettes under control of
CP/M. Although the minimum system is as specified above, for maximum
efficiency a 64K byte microcomputer with double-density diskettes is
recommended.

The CIS COBOL compilation system converts CIS COBOL source code into an
intermediate code which is then interpreted by a Run Time System (RTS).

CIS COBOL programs can be created using the standard CP/M text editor to
create the CIS COBOL source files. The Compiler compiles the source
programs from here, or they are entered interactively direct from the CRT.
After compilation is finished, the Run Time System is linked with the
compiled output to form a running user program . A listing of the CIS COBOL
program is provided by the Compiler during compilation. Any error messages
are included in this listing.

An interactive development software tool that enables run-time debugging of
COBOL programs with the COBOL code simultaneously displayed is available,
and is known as ANIMATOR. See Chapter 7.

Supplied with CIS COBOL is an interactive Debug software tool that enables
run-time debugging of the run-time program at object code level. See
Chapter 3.

NOTE:

The Interactive Debug softwa r e supplied with CIS COBOL cannot be used
if ANIMATOR is used. If you have ANIMATOR software, a decision must be
made at compile time as to which debugging tool is required.

The standard ANSI DEBUG module is also included in CIS COBOL but this cannot
be invoked if ANIMATOR is used.

The CIS COBOL System also incorporates a powerful utility program called
FORMS-2.

2 - 13

The purpose of FORMS-2 is to allow the user to define the screen layouts to
be used in a CIS COBOL application, by simply keying text at the keyboard
and so producing model forms on the CRT. The forms can be automatically used
to generate a program which will maintain files with the form data in them.

It provides an ideal medium of communication between the programmer and the
end user who may know nothing of computers. The minimum storage requirement
for FORMS-2 is 56k bytes .

The FORMS-2 Utility program is available from your CIS COBOL Dealer.

GETTING STARTED WITH CIS COBOL

ISSUE DISK

Each user is provided with the software that makes up the COBOL development
system described above on a CIS COBOL Issue Disk.

A CIS COBOL Issue Disk contains the software listed in Table 1-1.

Table 1-1. Issue Disk Contents.

COMPILER RUN-TIME CONFIGURATOR
SYSTEM

COBOL. COM RONA. COM CONFIG.COM
COBOL.101
COBOL.I02
COBOL.103
COBOL.I04
COBOL.MSG

DEMONSTRATION RUN-TIME UTILITY
PROGRAMS SUBROUTINES PROGRAMS

PI.CBL CALL.ASM FILEMARK.COM
STOCKl .CBL CALL.HEX
STOCK2.CBL CALL.PRN

If your issue disk does not in clude these it ems, refer to your CIS COBOL
Dealer . Note t hat f iles required with ANIMATOR are supplied only i f
ANIMATOR i s pur chase d, see the ANIMATOR Oper atin g Guide.

THE COMPILER

The CIS COBOL Compiler has several overlays and loads each overlay file fro m
the logged-in drive. The root segment is contained in COBOL.COM and the
overlays are cont a in ed in the other COBOL file s .

2 - 14

il!a 1

-

/lffi.

THE RUN TIME SYSTEM

The Run Time System (RTS) executes the intermediate code output from the
compiler. In addition to standard ANSI COBOL statements, CIS COBOL contains
many extensions for use with interactive programs. In order to take
advantage of these extensions it is necessary to configure the Run Time
System for the CRT conventions to be used, if this is not a standardADM-3.

CONFIGURATOR

The RTS can be configured to include subroutines written i n assembler
language. The CONFIG utility program is used to reserve an area within the
run-time system into which the user may enter assembler or other language
subroutines for use by the CALL Statement in a CIS COBOL program.

THE DEMONSTRATION PROGRAMS

PI.CBL, STOCKl.CBL and STOCK2.CBL a r e simple demonstration pro gr ams,
supplied in source form, which show many of the facilities present in CIS
COBOL, and which can also be used by newcomers to familiari ze themselves
with the system.

THE RUN-TIME SUBROUTINES

These modules are supplied to provide an example of the use of the COBOL
CALL facility to implement run-time sub-routin es (See Chapter 4). Copi es of
the list files can be found in the Run-Time subr outine appendices at the
back of this manual.

FIRST STEPS

Initialization

Initialize and format syst em disks as required (see DISK UTILIZATION below)
and COPY THE CONTENTS of the Issue di sk to become a working CIS COBOL
system.

Disk Utilization

CIS COBOL is designed to take full advantage of two-drive flexible-disk
systems, or systems with hard disk facilities.

2 - 15

Where two flexible-disk drives are available for compilation and running, it
can be beneficial to copy the compiler to one system disk and the Run Time
System (RTS) to another. By default the intermediate code is output to the
disk containing the source at compilation and if, therefore, this also
contains the RTS, the program can immediately be run. It is the user's
responsibility to decide on the most efficient disk allocation for this
system.

Compilation

Compile all the demonstration programs. These are source files and have the
extension .CBL.

EXAMPLE:

NOTE:

A>COBOL STOCKl.CBL<<
**CIS COBOL V4.5 COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD
**COMPILING STOCKl.CBL
**ERRORS=00000 DATA=00661 CODE=00235 DICT=00409:nnnnn/nnnnn GSA FLAGS
ppppp

A>

All the examples in this manual assume that the CIS COBOL software diskette
is loaded in drive A. If the diskette was loaded in drive B, the first line
in the above example would be:

B>COBOL STOCKl.CBL<<

After compilation, a directory listing of the disk will show that two new
files exist, namely STOCKl.LST which is the list file, and STOCKl.INT which
contains the intermediate code. Similar procedures should be followed for
STOCK2.CBL and PI.CBL.

Note that STOCK2 has an error in it which is present to show error formats
and is for demonstr a tion purposes only. It doe s not aff ect the running of
the program.

The message produced by the error is:-
nnnnnn MOVE GET-INPUT TO TF-DATE.
103***************** *******

NOTE:

If the file COBOL.MSG is available on the same drive as the compiler,
then a textual diagnostic is printed on the listing and also displayed
on the console, for each error found by the compiler.

2 - 16

-i

.,

OFF

_,

Running The Demonstration Programs

Assume that the Run Time System is now configured and has been renamed RUN.
This will typically be the case on a configuration with one CRT. Where there
is more than one CRT, it is a good idea to follow RUN with letters to
identify the particular CRT (eg RUND for the Apple Datamedia). RUN will be
used as the norm in this manual. When these programs have been compiled and
run, you have checked out your disk and have mastered the fundamentals of
CIS COBOL facilities.

NOTE: In the Appendices G through L the Run Time System is shown with the
file-name RUNA,COM which is the file-name on the issue disk.

Calculation of ,r (PI)

A>RUN PI. INT«

CIS RTS V4.5 COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD. URN XX/nnnn/XX

This clears the screen, followed by -

CALCULATION OF PI

NEXT TERM IS 0.000000000000

PI IS 3.141592653589

A>

During the execution of PI the next term changes as the iteration
progresses.

Stock Control Program One (Cursor Control)

A>RUN STOCKl.INT<<

CIS RTS V4.5 COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD. URN XX/nnnn/XX

This clears the screen, followed by -

STOCK CODE
DESCRIPTION
UNIT SIZE

<
<
<

>

>
>

This is a skeleton stock data entry program in which stock records are
created on a stock file in stock code order. It allows the cursor control
functions to be checked out. The operator has the ability to "tab" the
cursor forwards and backwards from one data input field to the next. The
cursor may be moved backwards and forwards non-destructively one character
position at a time in data input fields. It may also be HOME to the first
character position in the first data input field. In addition there is a

2 - 17

numeric validation on numeric fields which permits only numeric characters
to be entered, and an automatic left zero fill on numeric fields. (See
CURSOR CONTROL FACILITIES in Chapter 3 for cursor control keys on t he
standard CRT)

It also creates an indexed sequential file on disk called STOCK.IT together
with its index called STOCK.IDX.

To create a record, key the data into the unprotected areas defined by< >.
When a record is complete, press the RETURN key and the record will be
written to disk. The unprotected areas will then be space filled ready for
the next record to be entered, if the record has been correctly entered. If
the record remains displayed, the record was incorrectly keyed.

To terminate the run, enter spaces into the STOCK CODE field and press
RETURN.

This results in:

END OF PROGRAM

Stock Control Program Two (Data Input)

A>RUN STOCK2.INT<<

CIS RTS V4. 5 COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD URN XX/nnnn/XX

This clears the screen followed by -

GOODS INWARD

STOCK CODE < >
ORDER NO < >
DELIVERY DATE MM/DD/YY
NO OF UNITS < >

This is a skeleton stock data input program in which the stock record s
created by STOCKl can be accessed.

The same cursor control features are present as in STOCKl. INT. Note that
the DELIVERY DATE has a different method of prompting than has so far been
used.

Terminate in th e sa me way as for STOCKl.

PROGRAM DEVELOPMENT CYCLE

The cycle for development and running of CIS COBOL application programs that
must be performed by the programmer is as shown in Figure 1-1.

2 - 18

PREPARATION:

The source programs are created
on diskette with the user's own
existing editor program, or can be
keyed in directly to the compiler
using the CRT.

COMPILATION:

COBOL PROG.SRC ...

Loads the single pass
compiler to convert a source
program (PROG.SRC in this
example) into an interpreted
object form known as Inter
mediate Code (PROG.INT).
The user may specify the
file on which the listing
will appear. If this is a
disk file, it may be edited
to correct errors and used
as input for the next run
of the compiler.

RUNNING:
RUN PROG. INT ..•

Loads the run-time system
which in turn loads the
Intermediate Code. To aid
debugging, the CIS COBOL
interactive debugging facility
is available. This allows
the user to set break points,
examine and modify locations
and then continue execution.
Once loaded the programs run
to process the user files as
required by the application and
controlled by the Operator
through the CRT.

Once the user program is fully
tested it may be permanently
linked to the run-time system
by use of the"=" option.
See Chapter 3.

Figure l - l. Program Development Cycle.

2 - 19

Edi tot'

.<: ... ;::=:::::.:::
11<
II
Ii ,,
JI User

Source.
PLogram

CIS COBOL
Compiler

~ Files

Linked
Program

PROGRAM PREPARATION CONSIDERATIONS

The CIS COBOL compiler normally accepts source input from a standard source
file (specified on the compiler command line) as produced by the CP/M "ED"
Editor or compatible proprietary editor software.

The CIS COBOL program format is as specified for standard COBOL and is
detailed in the CIS COBOL Language Reference Manual.

NOTES:

1.

2.

Each line of source code must be terminated by a Carriage
Return/Line Feed character pair, including the last line.

The compiler will reject most non-alphanumeric characters within
the input file, e.g. the Tab character, unless embedded in literal
strings.

PROGRAM DESIGN CONSIDERATIONS

CIS COBOL provides the full COBOL facilities for overlaying in memory and
for invoking programs (dynamically) or subroutines whether written in COBOL
or assembler languages, as specified in the COBOL modules Segmentation and
Inter-Program Communication. Chapter 4 contains more information on the use
of these features.

2 - 20

CHAPTER 2

COMPILER CONTROLS

COMMAND LINE SYNTAX

The command line format is:

COBOL filename [directives]<<

COBOL is the name of the file which contains the compiler

filename is the optional name of the program which contains the CIS
COBOL source statements. If the filename is not given, the
console is taken as the input file.

directive is an optional sequence of CIS COBOL directives that can be
specified in any order. Each directive must be separated by
one or more spaces. If the sequence is too long to fit on
one line of the screen then it may be continued on a
subsequent line by typing an ampersand sign "&" followed by
carriage return. A particular directive may be on one line
only. Where directives have brackets the left-hand bracket
may occur zero, one or more spaces after the body of the
directive. To terminate the sequence, press return.

COMPILER DIRECTIVES

A description of each of the available compiler directives follows:

FLAG (level)

This directive specifies the output of validation flags at compile time.
The parameter "level" is specified to indicate flagging as follows:

LOW

L-I

H-I

HIGH

CIS

Produces validation flags for al 1 features higher than
the Low Level of compiler certification of the General
Services Administration (GSA).

Produces validati.on flags for all features higher than
the Low-Intermediate level of compiler certification of
the GSA.

Pr od uces validation flags for all features higher than
the High-Intermediate level of compiler c e rtification of
the GSA.

Produces validation flags for al 1 features higher than
the High Level of compil?r certification of the GSA.

Produces validation flags for only the CIS COBOL
Pxtensions to stande .rd COBOL as it is specified in the
ANSI COBOL Standard X.23 1974. (See the CIS COBOL
Language Reference Manual)

2 - 21

NOFLAG

No flags are listed by the compiler. This is the default if the FLAG
directive is ommitted.

RE SEQ

If specified, the compiler generates COBOL sequence numbers, re-numbering
each line in increments cf 10. The default is that sequence numbers are
ignored and used for documentation purposes only, i.e., NORESEQ.

NO INT

No intermediate code file is output, The compiler is in effect used for
syntax checking only. Ihe default is that intermediate code is output,
i.e., INT (sourcefile.INT).

NOLI ST

No list file is produced; used for fast compilation of "clean" programs.
The default is a full list, i.e., LIST (sourcefile.LST).

COPYLIST

The contents of the file(s) nominated in COPY statements are listed. The
list file page headings will contain the name of any COPY file open at the
time a page heading is output. The default is NOCOPYLIST.

NO FORM

No form feed or page headings are to be output by the Compiler in the list
file. The default is headings are output, i.e., FOR,~(60).

ERRLIST

The listing is limited to those COBOL lines coo.taining any syntax errors or
flags together with the associated error message(s). The default is
NOERRLIST.

INT (external-file-name)

Specifies the file to which the intermediate code is to be directed. The.
default is: source-file.INT.

LIST (external-file-name)

Specifies the file to which the listing is to be directed (this may be a
printing device, ie. console or printer or a disk file) The default is:
source-£ ile. LST

For list to console use: LIST(CON:) or LIST (:CO:)
For list to line printer use: LIST(LST:) or LIST (:LP:)

2 - 22

_,

FORM (integer)

Specifies the number of COBOL lines per page of listing (minimum :>). The
default is 60.

NO ECHO

Error lines are echoed on the console unless this directive is specified.
The default is ECHO.

NO REF

Suppresses output of the 4-digit location addresses on the right hand side
of the listing file . REF is the default .

NOTE:

Using the directive combination

NOREF NOFORM RESEQ

is a useful way of numbering your CIS COBOL source program .
Running the compiler with this combination results in a list file
that is an exact duplicate of your source file, with the sequence
number field in columns 1 - 6 in numerical order from 000010 in
upward increments of 10. An extra three lines are appended at the
end of the sou r ce code but these are ignored by the compiler if
represented in the source. The user can, of course, delete these
extra lines using the system editor software .

DATE (string)

The comment-entry in the DATE-COMPILED paragraph, if present in the program
undergoing compilation, is replaced in its entirety by the character string
as entered between parentheses in the DATE com?iler directive. This date is
then printed at the top of every listing page under the filename.

QUIET

This directive causes the error text diagnostic messages not to be
produced - leaving only the error number messages in the listing . The
default is NOQUIET, which allows error text messages to be listed.

PAGETHROW (character-code)

Specifies the ASCII character code for physical page throw on the pr·inting
device. The character code is expressed in decimal, and the default is
PAGETHROW (12).

2 - 23

ANIM

The ANIM directive compiles the program in such a way as to enable run-time
debugging with the ANIMATOR product and should not be specified if you do
not have this product. See Chapter 7. Note that the compiler produces
three new ANIMATOR files for your program in addition to the intermediate
code file (. INT) and any listing (.LST) with the extensions .SOB, • SCP and
.DDC respectively. Default is obviously NOANIM. This directive is only for
use when compiling programs for later debugging with the ANIMATOR product.

The remaining COfupiler directives are only for use when compiling programs
to run under the FILESHARE file management system product.

FILESHARE

This directive informs the compiler that the program being compiled contains
extended syntax statements that can be used only with the optional FILESHARE
product. (See the FILESHARE Users Guide). Without the directive, FILESHARE
syntax will be flagged as being in error, and further FILESHARE compile
directives (see below) will not be accepted.

RESTRICT (organization)

Categorises all files with the
"RELATIVE" - declared within the
Exclusive access. The default
Committable, (See FILESHARE above).

COMMIT (organization)

organization specified - "INDEXED" or
program being compiled, as being of type

file type is Unrestricted, but not

Categorises
"RELATIVE" -
Committable,

all files with the organization specified - "INDEXED" or
declared within the program being compiled, as being of type
but not Resettable, (See FILESHARE above).

DERESTRICT (organization)

Categorises al 1 files with the organization specified "INDEXED" or
"RELATIVE" - declared within the program being compiled, as bei ng of t ype
Unrestricted, but not Committable, (See FILESHARE above).

NOTE - A program containing FILESHARE syntax statements m.~y be compiled
using the FILESHARE directive and will run and can be tested in
isolation using a single-user RTS.

EXCLUDED COMBINATIONS

Certain of thes e directives may not be us ed in combination. Table 2-1 s hows
the directiv es th at are excluded if the directive shown adj acen t in the l ef t
hand column is specified

2 - 24

-

Table 2-1. Excluded Combinations of Directives

DIRECTIVE EXCLUDED DIRECTIVES

NOLIST LIST
NO FORM
FORM
RESEQ
COPYLIST
ERRLIST
NO REF

ERRLIST RESEQ
COPYLIST
NO REF

SUMMARY INFORMATION ON CRT

The general format of the basic command line is:

COBOL filename (directives] <<

and the Compiler will reply with:

**CIS COBOL V4.5 COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD.

where 4 is the version number and 5 is the release number.

Each directive is then acknowledged by the Compiler on a separate line, and
is either ACCEPTED or REJECTED. After all the directives have been
acknowledged, the Compiler opens its files and starts to compile. At this
point it will display the message:

filename COMPILING

If any file fails to open correctly , the Compiler will display:

filename FAILED TO OPEN

The compilation will be aborted, returning control to the operat i ng sJrstem.

2 - 25

When the compilation is complete the Compiler displays the message:

**ERRORS=nnnnn DATA=nnnnn CODE=nnnnn DICT=mmmnun:nnnnn/ppppp GSA FLAGS=nnnnn

where:

ERRORS

DATA

CODE

DICT

GSA FLAGS -

LISTING FORMATS

denotes the number of errors
found

denotes the size of RAM required i.e.
data area of the generated program

denotes the size of ROM required i.e.
code area of the generated
program

mmmmm denotes the number of bytes used in the data
dictionary,

nnnnn denotes the number of bytes remaining
in the data dictionary

ppppp denotes the total number of bytes in the
data dictionary

denotes the number of compiler validation flags
encountered or 'OFF' if the directive NOFLAG was
entered or assumed.

The general layout of the list file is as follows:

**CIS COBOL V4,5
**
** OPTION SELECTED

filename PAGE:

** - optional directives as entered in compile command line -
**
statement l

statement n

nnnn

HHHH

HHHH

**CIS COBOL V4.5 REVISION n URN AA/0300/BA
**COMPILER COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD
**
**ERRORS=nnnnn DATA=nnnnn CODE=nnnnn DICT=mmmrnm:nnnnn/ppppp GSA FLAGS=nnnnn

END OF LIST

2 - 26

-J

The first two lines of title information are repeated for each page.
The final line is the same as on the CRT display. The value denoted by
HHHH is a hexadecimal value denoting the address of each dataname or
procedure statement. Addresses of datanames are relative to the start
of the data area, while addresses of procedure statements are relative
to the start of the code area (There is an overhead at the start of the
data area, and a few bytes of initialization code at the start of the
procedure area for each SELECT statement).

A syntax error is marked in the listing by an error line with the
following format:

nnnnnn illegal statement

*** ** nnn *** *******

NOTE:

where

nnnnnn is the sequence number of the erroneous line

nnn denotes the error number

The asterisks following the errdr number indicate the
character position of the error in the preceding erroneous
source line. The asterisks at the end of the line simply
highlight the error line.

The sample program STOCK2 compiled as described under Compilation
in Chapter l contains a sample error line.

A flag is marked in the listing by a flagging line with the following
format:

nnnnnn
** level

flagged feature

where

nnnnnn is the sequence number of the flagged line.

'level' represents the level at which the feature is flagged using
the same acronyms as can be entered in the command line (when
setting the lowest required flagging level):

LOW
L-I
H-I
HIGH -
CIS

Low level
Low-Intermediate level
High-Intermediate level
High level
CIS COBOL extensions

The flagged feature is pinpointed at the position of the end of the
line of characters beneath the fla 00 ed line. The dash~$ at the end of
the line simply highlight the flagging line.

2 - 27

NOTE:

A program in which flags are indicated can still be run. Errors
should always be corrected, however, and the program recompiled
before the object program is run.

2 - 28

CHAPTER 3

RUN-TIME SYSTEM CONTROLS

RUN-TIME DIRECTIVES

COMMAND LINE SYNTAX

The command line syntax for running a CIS COBOL object program is as
follows:

RUN [-VJ [load param] [switch param) [link param)
filename [program params)

filename is the name of the intermediate code file. File and device
conventions for CP/M are given in Appendix F. RUN must have at least one
space keyed after it, and filename must have either a space or RETURN keyed
after it. The parameters need not have spaces keyed after them. An example
of the whole RUN command line is given later in this Chapter.

-V (Version) Parameter

The -V parameter inhibits version compatibility checking between the object
code (intermediate code) being run and the V4.5 run-ti me system. (By
default, only intermediate codes produced by the V4.5 compiler may be run by
the V4.5 run-time system.) Error 165 will result if-Vis not included, and
the int. code was not the product of the V4. 5 compiler. Intermedi a te code
produced by the CIS COBOL compilers V4. 3 or V4. 4 can be run on the V4. 5
run-time system using this directive.

Load Parameter

The optional load parameter provides the Run Time System loader with the
load point for the intermediate code in memory. The user has the option to
overlay optional modules to conserve program space. Additionally the CIS
COBOL Interactive Debug may be invoked. The memory l ayout of the Run Time
System (RTS) is as shown in Figure 3-l.

+D

Interactive Debug -D, +A

ANIMATOR (if available)
-A, +I

Indexed Sequential

-I

~ Nucleus

Figure 3-l. Run Time System Memory Layout .

2 - 29

The default load position excludes the Debug and ANIMATOR modules but
implies that Indexed Sequential is included. The Debug module may be
included and invoked by using the parameter "+D".

The+ A parameter invokes the ANIMATOR product and can be used only if you
have the ANIMATOR product. See Chapter 7 .

To exclude the Indexed Sequential package and the optional modules above it
(see Figure 3-1), the parameter "-I" should be given.

Table 3-1 shows which optional modules will be loaded for the available
parameters. lllo!!l

Table 3-1. Optional Modules by Load Parameter.

Load Parameter Optional Module Included

Debug ANIMATOR Indexed Seq. RTS only

+D Yes Yes Yes Yes
-D or +A No Yes Yes Yes
-A or +I No No Yes Yes
-I No No No Yes

Switch Parameter

CIS COBOL includes the facility of controlling events in a program at run
time depending on whether or not programmable switches are set by the
operator. See the description of the SPECIAL-NAMES paragraph in the CIS
COBOL Language Reference manual. The operator sets these switches at run
time by use of the Switch Parameter to the RUN command. The general format
of the Switch Parameter is:

2 - 30

where:

(]

! !
nl and n2

D

+ or -

denotes an optional item

denotes a choice

are any numbers in the range 07.
can be specified in any order and
appearance of any specific number
precedence.

They
the last
takes

see Standard ANSI COBOL Debug Switch Parameter below

set the switch nl, n2, etc . on or off
respectively. The default is that all
switches are off initially.

denotes that the preceding options enclosed
in the outermost brackets can be repeated.

See EXAMPLES later in this Chapter.

Standard ANSI COBOL Debug Switch Parameter

Users may also include a parameter to invoke the standard ANSI COBOL Debug
module, whether or not the CIS COBOL Interactive Debug extension to ANSI
COBOL is invoked. (See the Language Reference Manual for a description of
the Debug facilities).

To include the standard ANSI Debug facility a Run Time switch is required.
The format is as for a normal switch parameter (see Switch Parameter above),
but the numeric switch character is replaced by D. See also EXAMPLES later
in this chapter.

NOTE:

This facility cannot be invoked if ANIMATOR is in use, i.e. , the +A
parameter has been entered.

Link Parameter

When the program is fully tested it may be linked with the Run Time System
to produce an executable program that can be directly loaded. This is
achieved by including the parameter "=" to the Run Time System (see the
EXAMPLE overleaf) . When the intermediate code file has been loaded
(following the lines above) a binary file with the filename SAVE is produced
from the current store image. It is essential to rename the SAVE file, fror. ·

2 - 31

which to load directly, to prevent it being overwritten on the next use ot
'=' parameter. The REName command is used for this, and the new file-name
must be of the form:

filename.COM

See the CP/M operating documentation for the REName command.

NOTE:

Programs cannot be linked if the ANIMATOR is in use (ie., parameters +a
and= are mutually exclusive).

Program Parameters

These are any parameters required by the program, they can be read in on the
console file device :CI: or CON:.

COMMAND LINE EXAMPLES

1. The directive

2.

RUN B:PROG. INT 1 2<<

loads the program PROG from the intermediate file produced by the
compiler and passes the user program parameters 1 and 2 to the program
PROG, where they are accessable to the ACCEPT statement (See the CIS
COBOL Language Reference Manual).

The directive
PROG«

loads the PROG program but omits those options omitted when PROG was
linked (PROG must have been previously linked by the "=" link
parameter.)

If it is required to load the sample program STOCKl in future, instead
of the RUN command given in Chapter 1 (A>RUN STOCKl.INT), the following
command could be entered:

RUN= STOCKl.INT<<

followed by the REName command:

REN STOCKl.COM=SAVE<<

In subsequent loads only the command STOCKl<< would then be required.

2 - 32

IIR \

,fillilll

. ~ .

3.

4.

NOTE:

5.

6.

The directive
RUN +D (+1+2,+3) = PROG.INT<<

loads the program PROG with interactive CIS COBOL Debug and the Indexed
Sequential module. Programmable switches l, 2 and 3 are set, and a
binary file of the program PROG is created , which can subsequently be
loaded directly. A SAVE file is created and the Interacti ve CIS COBOL
Debug initial displa y will appear on the CRT when th e save d binary PROG
is run.

The directive
RUN (-2 +5-7+7) PROG.INT<<

loads the program PROG from the intermediate file produced by the
compiler, without Interactive Debug and with programmable switches 5
and 7 on and 2 off . Note that the last setting of switch 7 is
accepted . Switches l, 3, 4 and 6 are off by default.

An overlayed program always expects the overlays to be in the logged-in
drive. Disks in other drives are not searched for overlays .

The directi ve
RUN (+D) Pl'..OG. INT«

loads the program PROG from the intermediate code file produced by the
compil e r wi th the s tandard COBOL ANSI DEBUG module invoked, but
omitting CIS COBOL Interactive Debug.

The directive
RUN +D (+2,+4 +D) PROG.INT<<

loads the program PROG with Interactive CIS COBOL Debug and with
programmable switches 2 and 4 set, and with the stand ard ANSI COBOL
DEBUG module invoked.

WARNING:

NEVER TERMINATE A PROGRAM RUN BY POWERING DOWN OF THE COMPUTER SYSTEM,
PARTICULARLY IF THE PROGRAM CONTAINS DISK FILE PROCESSING.

2 - 33

INTERACTION IN APPLICATION PROGRAMS

CRT SCREEN HANDLING

COBOL is traditionally a batch processing language; CIS COBOL extends the
language to make it interactive. CIS COBOL offers many facilities for
automatic formatting of a CRT screen and facilitates keying of input.

The CIS COBOL programmer can specify areas of the screen into which the
operator is able to key data, and also whether such data is numeric or
alphanumeric. This is achieved by defining the screen as a record in the
DATA DIVISION in which the data fields correspond to the input area and
FILLER's correspond to the rest of the screen.

An ACCEPT statement nominates a record description, which permits input to
the character positions corresponding to variables identifed by data-names.
Conversely, a DISPLAY statement outputs only from non-FILLER fields in the
record description which it nominates. The programmer can thus easily build
up complex conversations for data entry and transaction processing.

While data is being keyed, the operator has full cursor manipulation
facilities, each variable acting as a tab stop. Non-numeric digits may not
be entered into fields defined as numeric. Finally, when the operator has
checked that the data is correct, the RETURN key is depressed and the data
becomes available to the program. Because all characters are transferred to
the appropriate area as they are keyed in there is no transmission delay.

Screen Layout and Format Facilities

The following facilities are available for screen layout and formatting:

* Screen as a record description

* FILLER

* REDEFINES

* AT line column

* CURSOR addressing

* Character highlighting (if available on the CRT in use)

* Clear screen

* Numeric validation of PIC 9(n) fields

* Automatic editing of numeric edited data-items

* De-editing of numeric edited to numeric data-items

2 - 34

Cursor Control Facilities

During execution of ACCEPT statements the cursor is manipulated on the CRT
screen by the cursor control keys on the console keyboard as shown in Table
3-2.

Table 3-2. CRT Cursor Control Keys

Function Keys
l

Home (referred to as \ or HOM in this Ctrl I
manual)

Tab forward a field I
Tab backward a field l
Forward Space ~

Backward Space -
Column Tab TAB

Left Zero
2

Return RETURN

1 - Where CTL is specified the operator must press the CTL key hold it down
and simultaneously press the character key. Back one space for ADM3A is
thus both the CTL and the H character keys.

2 - The "." for left zero fill is a II It when .
DECIMAL-POINT IS COMMA

is specified in the user program

2 - 35

INTERACTIVE DEBUGGING

Two levels of debugging are available to the programmer, The first involves
optional "debugging lines" that are included if the "DEBUGGING MODE" switch
is present in the "SOURCE-COMPUTER" sentence. The second is the interactive
Debug package that is included at run-time under the control of the user
(see Switch Parameter in this Chapter).

If Debug is included in the RTS, it will announce its presence when the
program is loaded as follows:

RUN +D STOCKl.INT<<

CIS RTS V4.5 COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD URN XX/nnnn/XX

Debug Mark 3.1 -title

-prompt

The user now has the following commands available:

p

G

x

D

A

s

T

L

M

c

Displays the current program counter (p-c).

Breakpoint at specified address.

Execute one CIS COBOL statement at a time.

Display bytes in the Data Division

Replace contents of a memory location by a hexadecimal value
or ASCII character.

Set start of block for correction or display.

Display bytes in block above.

Change bytes in block above.

Trace paragraphs up to breakpoint specified.

Output one CR LF on the CRT

Define Debug command macro with name specified

End macro definition

Displays specified character on the CRT

Precedes comment to describe a macro just entered.

A description of the use of each of these Debug commands follows.

2 - 36

THE P COMMAND

The P command displays the address at which the program counter (p-c)
currently points i. e, where the current instruction is in the Procedure
Division code of a program. This hexadecimal address is that printed in the
right hand column of a program listing.

EXAMPLE:

At the start of a program the p-c is at 0000 as shown below:

?P«
0000

-command
-current p-c
-prompt

NOTES:

1. The location given by the 'P' command is relative to the start of the
PROCEDURE DIVISION. All numbers in the Debug package are expressed as
hexadecimal values.

THE G COMMAND

The G command executes from the current p-c until the p-c reaches the value
in the parameter to 'G". If this value is not the address of an executed
instruction, the breakpoint is never reached and the program continues.

EXAMPLE:

If a breakpoint is required at PARA-22 in the following code:

PARA-22.
ADD 1 TO COUNT.
MOVE FIELD-1 TO FIELD-2.

the following command is typed:

?G 017A«

017A
Ol7B
Ol8C

hex addresses

The display of the second question mark above indicates that the G command
has executed completely and thus the breakpoint has been reached

2 - 37

NOTES:

1. Exactly four hexadecimal digits must be keyed for an address value.

2 .

A check on the current address at this point by use of the P command
would be as follows:

?P«
017A -returns p-c

The command G 0000 can be used to cause a breakpoint on entr y to the
next called subroutine.

THE X COMMAND

When a suspected error is reached, single instructions can be stepped
through one at a time by use of the 'X' command. Afte r each COBOL
instruction is executed, the hexadecimal number in the right-hand column is
the address of the first statement on a line. Where COBOL operations are
made up of several individual primitive instructions, DEBUG may appear to
halt in the middle of a line. If this occurs, the RETURN is pressed agai n .

EXAMPLE:

If an error occurred in the MOVE instruction the X command sequence
would be shown as follows :

?X«
OlBC

To check the contents of "FIELD-2" before and after the move for code in the
"DATA DIVISION" the display would be:

02
02
02

FIELD-1 PIC XXX VALUE "ABC".
FI ELD-2 PIC XXX VALUE "XYZ".
FI ELD-3 PIC X(BO) VALUE SPACE.

0030
0033
0036

To display bytes in the DATA DIVISION, the 'D' command can be used. This
displays 16 bytes from the address specified (again the address is derived
from the inform ation on the listing). It displays each byte as a
hexadecimal va lue plu s an ASCII equival ent i f i t is printable .

EXA.'IPLE:

?D 0030 «
41-A 42-B 43-C 58-X 59-Y SA-Z 20- 20- 20-•...

FIELD-1 FIELD-2 FIELD-3

2 - 38

-

If the MOVE is then executed and re-examined the following display results:

?X«
019C

?D 0030«
41-A 42-B 43-C 41-A 42-B 43-C 20- 20- 20-

THE A COMMAND

The "A" command is used to amend data at a specified memory location.

EXAMPLE:

To replace the first character "A" of FIELD-1 by "G". The value supplied
may be a two character hex value or an ASCII character preceded by quote eg
"G or 4 7.

?A 0030 47<< -amend byte
?D 0030«
47-G 42-B 43-C 41-A 42-B 43-C 20- 20- 20-

This correction facility allows continued running even if a bug has produced
an erroneous result.

THE S COMMAND

Where a number of corrections are required, DEBUG allows specification of a
working register which contains an address. This address can be set or
incremented and the contents can be displayed or modified immediately by use
of the 'S' command. The address and contents can then be displayed by
keying 'I'.

EXAMPLE:

To display the first byte of FIELD-1 operation would be as follows:

?S 0030«
? !«

-load address
-display

0030 47G

THE I • I COMMAND

To amend the byte at the current location
the working register.

2 - 39

is used; this also incr ~rr.ents

EXAMPLE:

To change FIELDl to "DEF" the display would be:

?s oo3o«
?.44.45.46«
?D 0030«
44-D 45-E 36-F

-load address
-modify

To increment only the working register use

THE T COMMAND

An advanced form of the 'G' command is the 'T' command. This also executes
up to a breakpoint in the PROCEDURE DIVISION, but also prints the address of
each paragraph encountered.

EXAMPLE:

?T 017B« trace up to 017B

NOTE:

The command T 0000 can be used to trace up to the start of the next
called sub-program.

DEBUG MACRO COMMANDS

The user will find that some Debug command sequences are used often when
debugging. If these sequences are long it can become tiresome typing them
in. To overcome this and to allow the development of complex debugging
sequences Debug permits the definition of macros comprised both of basic
operations and other macros. Macros are given names of one character.

The M Command

Macros are introduced by the 'M' command followed immediately by the macro
name.

EXAMPLE:

To define a macro to execute up to Ol8C, display the value at 0030, then
jump by a single instruction and display again; the following would be
typ p:):

?MZ G Ol8C 00030 L X D 0030 $<<

To invoke this macro its name is typed as follows:

2 - 40

-

?Z«
41-A 42-B 43-C 58-X 59-Y SA-Z
0190
41-A 42-B 43-C 41-A 42-B 43-C

First display

Second display

There are two other commands introduced in this macro: 'L' and '$'.

The L Command

The 'L' command merely forces a carriage return and line feed to be output
on the console.

The$ Command

The '$' command ends a macro definition.

The C Command

To allow macro writers to output characters to the console, the command 'C'
is provided. This outputs its parameter on the console

EXAMPLE:

?C "A<<
A

The ; Command

To improve readability of macros, comments may be inserted. These are
introduced by the character ';' and terminated by carriage return.

EXAMPLE:

?MZ D 0030 XL D 0030 $; Run macro<<

Macro names must be letters only.
internally to upper case.

Lower case letters are converted

If an error is made in typing in a macro then it may be reentered. However,
there is only a finite amount of macro space and space is not released if a
macro is reentered. If the space runs out or the maximum nesting of macros
is exceeded then the message STACK OVERFLOW will result.

2 - 41

EXAMPLE:

?MZ Z$
?Z«

macro to crash system<<

After the crash has occurred, the Debug system will return to command mode
and will reset the stack to allow the user to continue. However, if more
serious crashes occur i.e. those with no message, then the system will not
recover.

For full details of Debug commands see Appendix E.

2 - 42

tllll'\,

./WI
CHAPTER 4

CIS COBOL APPLICATION DESIGN CONSIDERATIONS

CIS COBOL provides the full COBOL facilities for including programs
dynamically and for overlaying in memory and for invoking programs
(dynamically) or subroutines whether written in COBOL or assembler
languages, as specified in standard COBOL modules Segmentation and
Inter-Program Communication.

With these facilities available, large anJ complex CIS COBOL application
programs can be run. System designers in particular should realize that the
total Ri.ze of tl1e 11ppl icA..tion is not ,:-onstrainia".! by th~ intrinsic hard~are
environment. This Chapter describes the use of these facilities.

Details of the CIS COBOL Language elements to include the Inter-Program
Communication and Segmentation features are given in the CIS COBOL Language
Reference Manual.

CIS COBOL APPLICATION DESIGN FACILITIES

The facilities available for Inter-Program Communication, Segmentation and
Chaining are summarised below and described in the remainder of this
Chapter.

INTER-PROGRAM COMMUNICATION (CALL)

CIS COBOL enables COBOL applications to be divided at source level into
separate independent modules. Each module is referred to as a program, in
line with ANSI 1974 notation. Programs are called dynamically from a main
application program. Programs written in assembler code language can also
be called from a main COBOL application program. In both cases control is
transferred by the use of the CALL statement which may be used with
parameters.

SEGMENTATION (OVERLAYING)

CIS COBOL enables a COBOL program with a large Procedure Division to be
broken into a COBOL program with a smaller Procedure Division and multiple
overlays providing the remaining Procedure Division. The overlays are known
as independent segments. A segmented program can be CALLed as can any
program.

CHAINING

Chaining is a CIS COBOL feature to pass control from a CIS COBOL application
to another application or utility. The chained application or utility
replaces the original CIS COBOL application in its entirety. .The CHAIN
facility is a subroutine supplied with the CIS COBOL Run-Time System. See:
ASSEMBLER SUBROUTINES PROVIDED BY MICRO FOCUS in this Chapter. Control is
not returned to the program calling CHAIN.

2 - 43

INTER-PROGRAM COMMUNICATION

By use of the Inter-Program Communication feature,control can be passed from
one program to another using the CALL statement and applications can
therefore be designed in independent modules or programs.

Figure 4-1 shows a sample application using inter-program communication.

Figure 4-1, Sample CALL Tree Structure.

The main program A which is permanently resident in memory calls B, C, or H
which are subsidiary functions and stand-alone functions within the
application. These programs call other specific functions as follows:

B calls D, E and F
c calls X Y, or z conditionally and Kor L conditionally.
H calls K,
K calls M

'
N or Q conditionally.

L calls M if it needs to,

As the functions B, C and H are stand-alone th"ey do not need to be
permanently resident in memory together, and can therefore be called as
necessary using the same physical memory when they are called. The same
applies to the lower functions at their level in the tree structure.

In the example shown in Figure 4-1, the use of CALL and CANCEL would need to
be planned so that a frequently called subroutine such as K would be kept in
memory to save load time, On the other hand because it is called by C or H
it cannot be initially called without C or Hin memory i . e., the largest of
C or H should call K initially so as to allow space. It is important also
to avoid overflow of programs; see MEMORY LAYOUT in this Chapter, At the
"level" of X, Y and Z it does not matter in which order loading takes place
because they do not make calls at a lower "level",

Another case for leaving called programs in memory is if they open files.
Otherwise these programs would have to re-open the files on every call.

2 - 44

The CIS COBOL Run Unit is an application that is written in CIS COBOL and
arranged into a number of separate CIS COBOL programs; these programs
communicate with, invoke and cancel each other by use of COBOL "CALL" and
"CANCEL" statements.

FORMAT OF CIS COBOL "CALL"

The general format of the CIS COBOL "CALL" and "CANCEL" statements are given
in the CIS COBOL Language Reference Manual.

SEGMENTATION

By use of the CIS COBOL Segmentation feature all of the Procedure Division
can be loaded into the available memory. Because it cannot, however, be
!~?den All ?t nnr<>, it ;,. lo'.lned one i;egment at a time, to achioave the same
effect, in the reduced store space as shown below.

Full program (assuming space available)

In the case of a COBOL segmented program ~he compiler allows space for the
largest segment in that program:

Se2ment l I
PERMANENT SEGMENT Segment 2 I

Segment 3
Segment 4 I

The beginnings of the segments of a Procedure Division of a segmented
program are denoted in the CIS COBOL source by a SECTION label, e.g.

SECTION 52.
MOVE A TO B.
etc.

SECTION 62.
MOVE XTO Y.
etc,

Segmentation can be applied only to the Procedure Division. The
Identification, Environment and Data Divisions are common to all segments;
in ~ddition there may be a common Procedure Division. All this common code
is known as the Permanent Segment. Control Flow between Permanent and
Independent Segments is fully specified in the Language Reference Manual.

2 - 45

CHAINING

The CIS COBOL program chaining feature can be used to repla ce an application
or utility in memory in its entirety. A CALL is made to the supplied CHAIN
utility program which allows · another linked program not requiring parameters
to b~ loaded and entered. There is no return to the calling program. The
CHAIN routine is described later in this Chapter.

MEMORY LAYOUT

J.n order to consider the use of overlaying (Segmentation) and/or
multilanguage calling of other programs together, it is useful to consider
the memory layout. Assuming that both features are in use Figure 4-2 shows
the memory layout.

RTS

Called assembler routines
area allocated by CONFIG

Main Permanent Segment/s
COBOL 1-----------------------program Overlay Area

(Independent segment/s)

Called Permanent Segment/s
COBOL ------------------------------
program Overlay Area (if any)

(Independent Segment/s)

Called Permanent Segment/s
COBOL ----------------·-
program 2 Overlay area (if any)

(Independent Segment/s)

etc ••• • •

Available memory

Figure 4-2. Memory Layout using Segmentation and Inter-Program Communication.

2 - 46

--

-

-

-

-

It can be seen in figure 4-2 that called programs are loaded contiguously.
If however a program is cancelled the memory is made available for another
called ;n.ogram. Planning of the use of CALL is therefore required to ensure
that space is available. When a prograin is loaded it is always placed in
the largest contiguous area of unused memory. Care is needed in the des~gn
of CALL/CANCEL sequences as fragmentation of the total available space in
memory for loading into can occur due to inappropriate design.

Figure 4-2 also shows that there is one fixed area of memory allocated by
CONFIG fo ·r called Assembler subroutines; see Chapter 5.

2 - 4 7

OPERATIONAL FEATURES

Each COBOL program in a CIS COBOL application suite, with the exception of
the main program, should have a Linkage Section in the Data Division through
which to communicate with COBOL programs that call them.

All CIS COBOL programs other than the main program must be compiled and
their intermediate code placed in disk files which are accessed at run time.
The main program may be in intermediate code and named as a parameter to
RUN, or it may be linked to RUN in the manner described earlier under
RUN TIME DIRECTIVES.

Any number of COBOL programs and assembler code subroutines can be CALLed
from a COBOL program. Operational features of CALL are as follows:

l.

2.

The CALLed intermediate code program file must be present on disk at
the time of the first CALL to the file or fatal error 164 will result.

There must be room available in memory for the program to be loaded.
The ON OVERFLOW phrase can be used to specify program action if
insufficient space is available. Otherwise the CALL statement is
ignored and the next calling program instruction is performed.

3. Run-time Subroutines must be preconfigured into the RTS.

4. Disks can be changed during or at run time by suitable user-programmed
operator messages and actions. Under CP/M the changed drive will then
become READ only (i.e. accessable only for input.)

5. The CANCEL statement reclaims unused storage when executed at run time.

6. No more than seven programs can have been called concurrently.

If a tree structure of called independent programs is used as shown earlier,
each segment can call the next dynamically by using the technique shown in
the following sample coding:

WORKING-STORAGE SECTION.

01
01

NEXT-PROG
CURRENT-PROG

PIC X(20) VALUE SPACES.
PIC X(20) VALUE "lSTPROG.INT".

PROCEDURE DIVISION.
LOOP.

CALL CURRENT-PROG USING NEXT-PROG.
CANCEL CURRENT-PROG.
IF NEXT-PROG; SPACES STOP RUN.
MOVE NEXT-PROG TO CURRENT PROG.
MOVE SPACES TO NEXT PROG.
GO TO LOOP.

2 - 48

-
-

-

-

The actual programs to be run can then specify their successors as follows:

LINKAGE-SECTIO~.
01 NEXT-PROG PIG X(20).

PROCEDURE DIVISION USING NEXT-PROG,

MOVE "SUCCESOR. INT" TO NEXT-PROG.
EXIT PROGRAM,

It can be seen ti:.:it in this way each independent segment or sub-program
cancels itself, and changes the name in the CALL statement to call the next
one by use of the USING phrase.

RUN TIME COBOL PROGRAM LINKAGE

Run-time execution of the COBOL verb CALL depends on the argument used by
the CALL.

When the subroutine or subprogram is in COBOL, the parameter is an
alphanumeric quantity whose value is interpreted as a file-name and the
appropriate file of intermediate code is loaded from disk into memory and
executed,

When the subroutine is configured into the RTS for the main program (See
RUN-TIME SUBROUTINES - CALL in this Chapter), the CALL parameter is a
numeric quantity, its value is interpreted as the linkage number to the Run
Time subroutine table and the corresponding machine code subroutine is
executed,

2 - 49

EXAMPLE LINKAGE

PROCEDURE DIVISION

CALL "A:SUBITM.INT" USING ..•

CALL "10" USING •• •

For the first CALL in this example to perform correctly the file SUBITM.INT
must be present on disk unit A and must contain a compiled COBOL program.
For the second CALL to -perform correctly the RTS must contain an assembler
subrou:i.ne (Run-Time subroutine) arranged as subroutine 10. A description
of run-time subroutine inclusion follows.

2 - 50

-
-

-

-

,.
I

RUN-TIME SUBROUTINES (IN ASSEMBLER OR NON-COBOL LANGUAGES)

The run-time system is designed in such a way that the user may write and
include assembled or other language subroutines that can be accessed using
the COBOL "CALL" verb. (See the Appendix on example use of this facility at
the back of this manual).

RESERVING SPACE FOR RUN-TIME SUBROUTINES

To reserve space in the run-time system for User Subroutines, it is
necessary first of all to run the CONFIG program (see Chapter 5) ~o direct
it to reserve the space and, from it, to obtain the absolute address at
which the code is to be placed, (See also Appendix K).

FORMAT OF RUN-TIME SUBROUTINE AREA

The code is now created, ensuring that an 'ORG' is placed at its head to
oosition the code at the correct place in store as specified by the
configuration utility. The code is entered using any CP/M editor software,
then assembled and finally linked at this address using the CP/M DDT linker
facility.

Each Subroutine is identified by an integer as in the example in Appendix M
(CALTOP).

The first part of the Subroutine area must consist of a table of addresses
as follows:-

BYTE 0 Highest subroutine number which is available
BYTE 1+2 Address of routine to satisfy CALL "0"
BYTE 3+4 Address of routine t o satisfy CALL "l"
BYTE 5+6 Address of routine to satisfy CALL "2"

If byte 0 contains n, the user need not include all numbers in the range O
to n, in which case an unused integer has address 0. Thus if the user
wishes to support CALL "0" and CALL "2" only, the table would be as
follows:-

ORG
DB
DW
DW
DW

NNNNH
2D
ADDR0
0
ADDR2

;PROG ADDRESS FROM CONFIGURATOR
;3 ROUTINES AVAILABLE
;ADDRESS OF CALL "0" ROUTINE
; CALL "l" NOT IMPLEMENTED
;ADDRESS OF CALL "2" ROUTINE

2 - 51

PARAMETER PASSING TO RUN-TIME SUBROUTINES

Parameter passing in run time subroutines is as follows:

l. If one parameter is passed, its address will be found in register pair
B,C.

2.

3.

4.

5.

6.

7.

8.

9.

If two parameters are passed, the first parameter address will be
passed in B,C the second address in D,E.

If three or more are passed, the last two will be passed as in 2 above,
and the rest will be stacked, in such a way that the first parameter
will be the last to be POPped from the stack.

The return address to the Run Time System will be found at the top of
the stack on entry to the CALL code.

The user need not clear all parameters from the stack, since this will
be automatically reset by the Run Time System, provided the address on
the top of the stack on entry is returned to.

If register B,C and/or D,E are not used for parameter passing, they
will contain 'FFFF' on entry to the CALL code.

After the last parameter has been POPped from the stack, the next POP
will return the value FFFF.

If only one parameter is passed the entry following the return address
on the stack will be FFFF as will registers D,E.

If no parameters are passed, then conditions will be as in 8 above with
B,C set to FFFF also.

The use of terminator FFFF allows the user programmer to pass a variable
number of parameters to the subroutine.

PLACEMENT OF THE SUBROUTINES IN THE SUBROUTINES AREA

The subroutines will typically be written completely independently of the
COBOL program in any language which generates microprocessor order code.
They will be assembled or compiled into absolute modules located at the
addresses specified in the table. at the front of the subroutine area.
During development these addresses will typically change with each new
compilation, as the sizes of the various subroutines change.

The subroutine object code will then be patched into the subroutine area
using the CP/M DDT utility.

This utility is described in detail in the CP/~ Manual describing DDT.

2 - 52

-

-

-\

SAMPLE RUN WITH RUN-TIME SUBROUTINES

The following series of operations show a typical CIS COBOL object program
run where a CALL is made to user subroutines.

l. Place CP/M system disc in drive A.

2. Place object pack containing your HEX file in drive B.

3. Key B: to log in drive B.

4. Key A:OOT RUNA.COM - where RUNA.COM is the configured RTS.

S. The system will respond with: -

NEXT
6100

PC
OlOOH

6. Key Ixxxxxx.HEX - the HEX file identity

7. Key R

8. The system will respond with:-

NEXT
XXYY

PC
OOOOH

At this point take a note of the first two digits of NEXT i.e. "XX" in this
example - convert them to decimal from hexadecimal and subtract 1.

EXAMPLE:

NEXT PC
6216 OOOOH

XX= 62H
i.e., 980-1 = 970

Make a note of this decimal value.

9. Press the Control and C keys simultaneously.

10. System responds with B

11. Key SAVE NN RUNZ.COM

Where NN is the decimal number noted in (8), and RUNZ .COM is the of
your new Run Time System.

2 - 53

ASSEMBLER SUBROUTINES PR(VIDED BY MICRO FOCUS

The following standard CALL codes are available in the Run Time System.

CHAIN CALL code "260"
PEEK -: CALL code "261"
POKE CALL code "262"
GET CALL code "263"
PUT CALL code "264"
ABS CAL C.\LL code "265"

The user may call these routines i.-ithout making any alteration to the Run
Time System.

2 - 54

-

"j

The CHAIN Subroutine

The CHAIN call allows another linked CIS COBOL program or any program not
requiring parameters to be loaded and entered. There is no return to the
calling program.

A parameter list of one variable must be passed with CALL CHAIN:

*

EXAMPJ.E:

The data-name containing the file-name of the program to chain to.
The file-name must be terminated by at least one space character.

WORKING-STORAGE SECTION.

03 NEXT-PROG PIC X(lO) VALUE "PRIN2.COM "

03 CHAIN PIC X(3) VALUE "260",

PROCEDURE DIVISION.

CALL CHAIN USING NEXT-P~OG.

2 - 55

The PEEK Subroutine

The PEEK call allows an absolute address location to be examined from a user
program. The CALL returns into the user area a copy of the 8 bit value at
the absolute address.

A parameter.list of two variables must be passed with CALL PEEK:

* The five-character data-name containing the absolute address
to be read from .

* The one-character data-name where the value is to be read to.

EXAMPLE: i-,

WORKING-STORAGE SECTION.

-03 PEEK PIC X(J) VALUE "261". -
03 ADDRESS PIC 9(5) VALUE 1234 .

03 DATA-VAL PIC X.

..,
PROCEDURE DIVISION.

CALL PEEK USING ADDRESS, DATA-VAL.

-
2 .. 56

The POKE Subroutine

The POKE CALL al lows an absolute address location to be set from a user
program. The CALL transfers a copy of an 8-bit value in the user program to
an absolute address.

A parameter list of two variables must be passed with CALL POKE:

* The five-character data-name containing the absolute address to be
written to.

* The one-character data-name whose value is to be written.

EXAMPLE:

WORKING-STORAGE SECTION.

03 POKE PIC X(3) VALUE "262" .

03 ADDRESS PIC 9(5) VALUE 2345.

03 DATA-VAL PIC X VALUE "V"

PROCEDURE DIVISION.

CALL POKE USING ADDRESS, DATA-VAL.

2 - 57

The GET Subroutine

The GET call allows a hardware port to be input from a user program.
CALL inputs the port and returns the 8 bit value to a user area.

A parameter list of two variables must be passed with CALL GET:

* The three-character data-name containing the port to be input
from.

* The one-character data-name to be input to.

EXAMPLE:

WORKING-STORAGE SECTION.

03 GET PIC X(3) VALUE "263".

03 PORT PIC 9(3) VALUE 129.

03 DATA-VAL PIC X.

PROCEDURE DIVISION.

CALL GET USING PORT, DATA-VAL.

2 - 58

-
_,

-i

-i

The .-i

-
liffl1

--
_,

--
'-"'

-
_,

""'"'\

._,

~

_,

~

--
-,

-.

The PUT Subroutine

The PUT call allows a hardware port to be output from a user program.
The CALL outputs an 8 bit value to the port froffi a user area.

A parameter list of two variables must be passed with CALL PUT:

* The three-character data-name containing the port to be written to.

* The one-character data-name to be written from.

EXAMPLE:

WORKING-STORAGE SECTION.

03 PUT PIC X(3) VALUE "264".

03 PORT PIC 9(3) VALUE 131.

03 DATA-VAL PIC X VALUE X"2F",

PROCEDURE DIVISION.

CALL PUT USING PORT, DATA-VAL.

2 - 59

The ABSCAL Subroutine

The ABSCAL call allows a subroutine CALL to an absolute location. No
parameters are passed to the subroutine at the absolute address.

A parameter list of one variable must be passed .with CALL ABSCAL:

* The five-character data-name containing the decimal absolute
address to be called.

EXAMPLE:

WORKING-STORAGE SECTION.

03 ABS CAL PIG X(3) VALUE "265".

03 ADDRESS PIG 9(5) VALUE 5.

PROCEDURE DIVISION.

CALL ABSCAL USING ADDRESS.

2 - 60

-
-

The File Name Manipulation Routines SPLIT and JOIN

CP/M names can be decomposed into a device code, fi le name and file
extension, and the supplied sub-programs SPLIT and J OIN ca n be used by
system program mers to decompose and reconstitute names in this way. Usually
SPLIT is called first and then JOIN is used to produce a file name string
with a modified extension.

Important use of these subroutines is made by the CIS COBOL software as
follows:

*

*

*

The compiler to produce default listing and intermediate .code filenames
from the source file name

The compiler to produce the file names of it s ove rlays

Segmented programs to produce the file names for the various segments
and the inter-segment reference file

* The standard CIS COBOL indexed sequential file package t o produce the
name of the index file

SPLIT and JOIN can also prove of use to an application programmer where
there is a requirement to process filena mes partiall y specified, and when
writing portable soft wa re .

A parameter list of four variables must be passed with CALL SPLIT or CALL
JOIN:

l. Identifier of the complete name string (minimum length 20 bytes)

2. Identifier of the devi ce substri ng (minimum length 6 bytes)

3. Ide ntifier of the file name substring (minimum length 10 bytes)

4. Identifier of the file extension substring (minimum length 5 bytes)

SPLIT separates the string found at 1 storing its resultant substrings at 2.
3. and 4. separately; JOIN takes the substrings found at 2 . 3. and 4. and
combines them storing the resulting complete string at 1.

The file name strings are subject to the CP/M maximum length and may be
terminated ea rli er by a space cha rac ter. This means tha t the parameter s
(1 - 4) spe cified above must be the identifiers of areas of WORKING STORAGE
each at least as large as their re spective mi nimum length.

2 - 61

The order of the parameters passed to SPLIT and JOIN is of course important:

CALL SPLIT using filename-to-be-split,
device-substring,
name-substring,
extension-substring.

CALL JOIN using

EXAMPLE:

concatenated-substrings,
device-substring,
name-substring,
extension-substring.

WORKING-STORAGE SECTION.

01 Keyed-filename PIC X(20).
01 Namstr PIC X(lO).
01 Devstr PIC X(6).
01 Extstr PIC X(S).

01 DISK-filename PIC X(20) value

01 Default-device PIC X (2) value

01 SPLIT PIG X (3) value "268".

01 JOIN PIC X(J) value "269".

2 - 62

spaces.

nB:".

-

-

Procedure Division.

*
*
*
*

*

*
*
*
*

ACCEPT keyed-filename.

Call SPLIT using keyed-filename, devstr, namstr, extstr.

Now put default device into device string if user
did not specify a particular device.

IF devstr - spaces move default-device to devstr.

call JOIN using disk-filename, devstr, namstr, extstr.

Now perform file processing on filename specified by
the user, and now concatenated in 'disk-filename'

2 - 63

ll!iiiii1
I

CHAPTER 5

CONFIGURATION UTILITY

OBJECTIVES

The Configuration Utility Program (CONFIG) can be used as follows:

1.

2.

To reserve an area within the RTS into which the user may enter
assembler or other language subroutines for use by the CALL statement
in a CIS COBOL program. This function may only be performed once and
it is therefore essential to copy the RTS before running CONFIG. (The
subroutine code is written by the user as an absolute segment which he
then patches into the area reserved in the RTS using the CP/M DDT
Utility).

To modify the default tabbing positions used when ACCEPTing data from
the screen.

NOTE:

CONFIG does not provide a capability for the inclusion of user
subroutine~ into linked programs or programs that already contain user
subroutines.

USING CONFIG

A CP/M System disc is loaded in drive A, and the CIS COBOL Issue Disk in
drive B. CP/M is bootstrap loaded and the system responds as follows:

A>B:

B>

To load CONFIG the following entry is typed:

B>CONFIG [filename]

At this point, CONFIG signs on, as shown in the listings in the Appendices.
It should be noted here that whenever CONFIG is waiting for the operator to
key something, it will output the" >" sign as a prompt character. The first
request from CONFIG is the file name of the run-time system to be configured
if this has not been enter ed in the command line. In the appendices the
reply RUNA.COM was made.

2 - 64

Once the configuration utility has been given the RTS file name, there will
be a short pause during which it attempts to access the file. Should it
fail to find the file (e.g . wrong file name or no .COM extension) it will
display:

FILE OPEN FAILURE, PLEASE ENTER A NEW NAME

and request the file name to be entered again.

NOTES:

1.

2.

If the disk identifier is omitted, the configuration utility accesses
the logged in disk which is in drive B.

A version check is carried out after successful opening of the RTS
file. ONLY Version 4.5 programs can be configured using CONFIG
Version 3.

The RTS allows the use of a 'TAB' character. This allows the user to jump
eight characters at a time on input, as the default.

Users have the opportunity to vary this default, by replying Y (Yes). The
configuration utility then asks the operator to key in the character
positions at which the tabs should be placed (See Appendix H).

The RTS also provides the ability to supply Assembler code that will service
the COBOL "CALL" verb. A reply of N at this point results in the end of
run. The effects of replying Y are described under RUN TIME SUBROUTINES in
this Chapter. See also RUN-TIME SUBROUTINES - CALL in Chapter 4.

NOTE:

CONFIG does not allow for inclusion of user subroutines in a linked
program.

At this point the RTS is ready to be stored on disk and there will be a
short delay while this takes place.

2 - 65

-
-

(!1111!1
I

RUN TIME SUBROUTINES

The user may include his own subroutines in the RTS, which can be CALLed
from a CIS COBOL program. These may be written in assembler or other
languages such as PL/M which generate 8080 or Z80 machine code. If such
subroutines are required, then the configuration utility must be used to
determine at what address they should be held.

The standard RTS supplied allows parameters to be used at run time to
control the position at which the COBOL Intermediate Code is to be loaded.
Parameters must not be entered if the ANIMATOR package is in use (+A was
entered). Once the configuration utility has configured the Run Time System
to al.low run time subroutines to be included, this facility is withdrawn,
and the Intermediate Cod~ will always load at the address determined by the
configuration utility . The actual address is dependent on the answers to
questions posed by CONFIG requesting details of the facilities wanted in the
RTS being configured.

The configuration utility will allow the following options:

1. To add the subroutines tu the end of the RTS allowing all facilities to
be used.

2. To remove the possibility of using the Interactive Debug package,
overwrite this with the subroutines and load the intermediate code
beyond this.

3.

4 .

To overwrite the Indexed Sequential package and the Debug and ANIMATOR
package.

To overwrite the Indexed Sequential, Debug and ANIMATOR packages.

Having ascertained where the run time subroutines should be located the user
is asked to specify the length of the subroutines in order that the load
point for the intermediate code may be determined. It is important to
ensure that the figures input for the length of the subroutines is the
maximum that is likely to be used, as any excess will be overwritten by the
intermediate code. ~~

The configuration utility will advise the address at which the subroutines
are to be located .

2 - 66

If the modules established by CONFIG as overloadable (based on user replies
during the CONFIG run) have a total contiguous length exceeding that of the
assembler routines, the routines can reside in this free space; otherwise
they must be appended at the high-address end of the RTS.

It can therefore be seen that the total length of the RTS, once assembler
subroutines are included, may or may not have increased depending on the two
factors above.

The diagram below gives an idea of the length (in decimal) of the RTS
overloadable modules in CIS V4.5.

RUN TIME DEBUG -2600 bytes

These modules may ANIMATOR (RESIDENT) -1400 bytes over loadable
not be overloaded RTS modules

INDEXED -7300 bytes

SEQUENTIAL

.. ~~~~~~~~~~~·- 0 - low end of memory

From the above diagram it can be seen that the maximum length of assemb l er
subroutines that can be embedded in the RTS is of the order of 11,000
bytes - only possible in the case where all of the three modules DEBUG,
ANIMATOR, INDEXED are specified as excludab""Ie:°

Note that the size of the RTS will NEVER decrease as a result of assembler
subroutine inclusion, because of the fixed module at the top of the RTS.

2 - 67

-

-

CHAPTER 6

INCORPORATING FORMS-2 UTILITY
PROGRAM OUTPUT

INTRODUCTION

The FORMS-2 Utility program offers two major facilities to CIS COBOL users:

l.

2.

The user can define screen layouts to be used in a CIS COB0L
application by simply keying the text at the keyboard, and so producing
a model form on the CRT,

The user can automatically generate programs to manipulate data input
using the created form. In particular, indexed sequential files can be
generated and maintained automatically, and these files can, of course,
be used with CIS COBOL programs.

The FORMS-2 Utility is available as a separate software package, and is
supported by the FORMS-2 Utility Program Users Guide.

SCREEN LAYOUT FACILITY

The FORMS-2 Screen Layout facility generates source COBOL Record
Descriptions for screen layouts.

MAJOR FACILITIES

Users have three major facilities available to them:

l.

2.

3.

They may store an image copy on disk of the form they have just defined
for subsequent use in this or another FORMS-2 run. The image can be
printed to obtain a hard copy, using the 0/S standard file print
utility program.

They may generate CIS COBOL source code for the data descriptions
required to define the form just created. This may then be included
into a CIS COBOL program by use of the COPY verb.

They may choose to generate a Check Out program which allows
duplication of many machine conversations which would take place during
a run of the application which is being designed.

CIS COBOL PROGRAMMING FOR FORMS-2 SCREEN LAYOUTS

All that the user has to do to incorporate FORMS-2 Screen layout output in a
program is to specify the FORMS-2 output file name (filename.DDS) in a r.ou,;,
COPY statement. Obviously data item names in the user program must ~.,
specified to correspond with those generated from a user-specified base name
by FORMS-2. Details of FORMS-2 nam~ generation are g:.ven in the FORMS-2
Utility Program Users Guide.

EXAMPLE:

000000 COPY "DEMO.DDS".

2 - 68

GENERATED PROGRAMS

The FORMS-2 Utility generates a COBOL program which maintains data stored in
thP created forms in an indexed sequential file automatically, with
automatic generation of file names from a user-supplied base name. These
files comply with the standards in use by the operating system under which
CIS COBOL is being used.

CIS COBOL PROGRAMMING FOR FORMS-2 GENERATED FILES

No special programming is required to use FORMS-2 generated program files in
a CIS COBOL application program. The files are processed as normal indexed
sequential files. It is worth noting that the files can be fully maintained
interactively by use of only the FORMS-2 Utility. In addition to
establishing or deleting files, this includes the following facilities:

* Insertion of new records

* Insertion of the same data in records with different keys

* Display of any selected record/s (Full inquiry facility)

* Insertion or amendment of records dependent on their key

* Deletion of records

* Read and display next record or a message if end of file detected

* Terminate run

Details of the FORMS-2 Indexed Sequential File handling facilities are given
in the FORMS-2 Utility Program Users Guide.

2 - 69

-

-

-

CHAPTER 7

USING THE ANIMATOR UTILITY PROGRA.~

ANIMATOR is a COBOL oriented debugging tool that is available for use with
CIS COBOL. The main aim of ANIMATOR is to free the COBOL programmer from
the need to be aware of the internal representations of either data or
procedural code, so that even a trainee programmer already has the knowledge
necessary to debug his programs effectively.

This is achieved by using the screen as a "window" into the source COBOL
program and "animating" execution by moving the cursor from · statement to
stai:ement as execution proceeas. !:ipeed ot execution can be varied; 'the user
may also switch off animation thus al lowing rapid execution up to the area
of interest.

The user can interrupt execution at any point, either by defining
break-points or dynamically simply by pressing the space-bar on the
keyboard. Whilst execution is suspended the user can easily examine any
part of the source code by means of simple commands to refresh the sc n•en
display. This means that it is not even necessary to have a printc•,t
compilation listing in order to debug a program.

Various other debugging functions are available, invoked by pressing a kPy.
Only the top 20 lines of the screen are used for the display of source code,
the bottom area being used to display menus of available commands, some of
which invoke subordinate command menus.

Where debugging functions require reference to either data items or
procedural statements this is achieved by the user moving the cc,r~or to
"point" at the appropriate place in the source code. Alternatively data
items can be referenced by actually typing the COBOL data-name.

Where control of ANIMATOR requires more keyboard input than simply pointing
with the cursor or pressing one of the displayed command characters, COBOL
syntax is used. For instance, replacement of data item values is achieved
by typing that value in COBOL literal format (i.e. non-numeric literals are
enclosed in quotes).

The facilities provided
COBOL-oriented debugger.
provides the ideal means
unfamiliar program.

in ANIMATOR make it much more than simply a
It can be a valuable training aid, and also
for a programmer to attain understanding of an

ANIMATOR is supplied as a separate product complete with dccumentat ion.
This Chapter describes CIS COBOL operating considerations in order to us~
the ANIMATOR utility.

2 - 70

COMPILATION

In order to be able to use ANIMATOR with a CIS COBOL program, a specific
directive must be included in the CIS COBOL compiler command line .

THE ANIM COMPILER DIRECTIVE

The inclusion of directives in the compiler command line is described in
Chapter 2 of this manual. If the ANIM directive is included the compiler
will compile the source input in such a way as to allow run time ani.mation.
The compile,: generates in addition to the ".INT" file, three other files
with extension identifiers as follows:

.DOC

.SCP

.SCB

These files wil 1 be directed to the same drive as the intermediate file
produced by the compiler.

NOTE:

The intermediate code file includes data specifying whether or not it
was produced by compilation with the ANIM directive specified. An
intermediate file produced by compiling without ANIM cannot be run with
animation even if the three extra files mentioned above are available
from a previous compilation when ANIM was specified.

RUNNING PROGRAMS WITH ANIMATOR

To run a CIS COBOL program that has been compiled with the ANIM compiler
directive specified, it is necessary to enter the run command line parameter
+A. Chapter 3 of this manual describes the CIS COBOL Run Command line.

THE +A RUN COMMAND PARAMETER

In addition to specifying a particular load point for a user program (see
Chapter 3) the +A parameter is the animation run time switch, and causes
ANLll!ATOR to be loaded and run providing dynamic control of the user program.
The following files must be present at run time in order to use ANIMATOR:

File

$ANIM.V45

filename.CSL
filename.SCP
filename.SCB
filename .DDC

Disk Drive

The logged in drive

The drive containing the int. code
(Note: the file containing the COBOL
source must have the extension .CBL)

2 - 71

-

-

If $ANIM.V45 is not present on the logged-in drive, a message is displayed
on the VDU and ANIMATOR is permanently switched off. If any of the other
files is not.present, then the message

Animation of root programs inhibited - missing files
is displayed and ANIMATOR is not activated for the root program, but stil 1
may be invoked for called subprograms.

NOTE:
Deletion/Renaming of files (except $ANIM.V45) can be used to switch off
animation for selected programs within a suite. This facility can be
used as an alternative to recompiling without the ANIM switch.

EXAMPLES:

The directive

RUN +A PROG. INT<<

loads and runs the program PROG with animation. The program must have
been compiled with ANIM and all necessary files (see LOAD Parameter in
Chapter 3) must be present. Also, the RTS must be capable of
initiating ANIMATOR (i.e. this facility is available and has not been
omitted at configuration time - see Chapter 5).

The dirPctive

RUN +A= PROG.INT<<

is invalid, and results in the message
"=" and "+A" not allowed in conjunction

being displa yed on the screen, followed immediately by a return to
CP/M.

The dirPctive

RUN +A +I = PROG.INT<<

is invalid (only 1 load parameter allowed) and results in the message
Command line processing error

being displayed on the screen, followed immediately by a retur n to
CP/M.

MEMORY MANAGEMENT CONSIDERATIONS

The si ze of th e RTS with ANIMATOR includ ed is larg e r by 1920 (decimal)
bytes, than it will be when not i nclud ed. Addi t i ona lly, the program
$ANIM.V45 will be loaded as and when it is necessary to animate a program,
and will remain in memory thereafter. The diagram that follows gives an
idea of the memory usage by CIS systems components when running with
ANIMATOR:

2 - 72

$ANIM. V45 - 12K approx

ANIMATOR SCREEN-DATA - 1920 bytes

RTS NUCLEUS - 29K approx

0 - low end of memory

ANIMATOR attempts to load the complete Data Division of the program to be
animated into memory; it then loads as much of the Procedure Division as can
be fitted in (ANIMATOR maintains a 'window' onto the procedure division
code). If the entire Data Division of the program cannot be accommodated in
available memory, then the program cannot be animated.

NOTE:

1.

2.

3.

In addition to memory usage by CIS COBOL system components, memory may
be reserved by a resident operating system at the top end of memory.

ANIMATOR and Interactive Debug (see Chapter 3) are mutually exclusive
facilities and cannot be used concurrently .

If the RTS has been configured for user subroutines, and at the time of
configuration the ANIMATOR or Interactive Debug modules were excluded
(as described under MEMORY. MANAGEMENT CONSIDERATIONS in Chapter 3) it
is invalid to -supply a load parameter of "+A" or "+D", since the RTS no
longer contains these modules. In general, attempts to activate a
facility which has been omitted in this way will result in the message:

Pre-assigned Load Point Used

2 - 73

APPENDIX A

SUMMARY OF COMPILER AND RUN-TIME DIRECTIVES

COMPILER DIRECTIVES

The general format of the command line for compilation is:

A> COBOL filename [directives]

filename is the name of the file that contains the CIS COBOL source program.

A description of the available compiler directives follows:

FLAG (level)

This directive specifies the output of validation flags at compile
time. The parameter "level" is specified to indicate flagging as
follows:

LOW

L-I

H-I

HIGH

CIS

NO FLAG

Produces validation flags for al 1 features higher
than the Low Level of compiler certification of the
General Services Administration (GSA).

Produces validation flags for all features higher
than the Low-Intermediate level of compiler
certification of the GSA.

Produces validation flags for al 1 features higher
than the High-Intermediate level of compiler
certification of the GSA.

Produces validation flags for all features higher
than the High Level of compiler certification of
the GSA.

Produces validation flags for only the CIS COBOL
extensions to standard COBOL as it is specified in
the ANSI COBOL Standard X.23 1974. (See the CIS
COBOL Language Reference Manual).

No flags are listed by the compiler. This is the default if the FLAG
directive is ommitted.

RESEQ

If specified, the compiler generates COBOL sequence numbers,
renumbering each line in increments of 10. The default is that
sequence numbers are ignored and us ed for documentation purposes onLy,
i.e., NORESEQ.

2 - 74

NO INT

No intermediate code file is output. The compiler is, in effect, used
for syntax checking only. The default is that intermediate code is
output, i.e. INT (sourcefile.INT).

NOLI ST

No list file is produced; used for fast compilation of "clean"
programs. The default is a full list, i.e., LIST (sourcefile.LST).

COPYLIST

The contents of the file(s) nominated in COPY statements are listed.
The list file page headings will contain the name of any COPY file open
at the time a page heading is output. The default is NOCOPYLIST.

NO FORM

No form feed or page headings are to be output by the compiler in the
list file. The default is headings are output,i.e., FORM (60).

ERRLIST

The listing is limited to those COBOL lines containing syntax errors
together with the associated error message(s). The default is
NOERRLIST.

INT (external-file-name)

Specifies the file to which the intermediate code is to be directed.
The default is: source-file.INT.

LIST (external-file-name)

Specifies the file to which the listing is to be directed. (This may
be a printing device, i.e. console or printer or a disk file.) The
default is: source-file.LST.

FOR,'! (integer)

For list to console use: LIST (CON:)
For list to line printer use: LIST (LST:)

Specifies the number of COBOL lines per page of listing (minimum 5).
The default is 60.

NOECHO

Error lines are echoed on the console unless this directive is
specified. The default is ECHO.

2 - 75

-

NO REF
Suppresses output of the 4-digit location addresses on the right hand
side of the listing file. REF is the default.

DATE (string)

The comment-entry in the DATE-COMPILED paragraph, if present in the
program undergoing compilation, is replaced in its entirety by the
character string as entered between parentheses in the DATE compiler
directive. This date is then printed at the top of every listing page
except the first.

QUIET

The full text of error messages is suppressed, only the numbers are
produced. The default is NOQUIET.

PAGETHROW (character-code)

ANIM

Specifies the ASCII chara~ter code in decimal for physical printer page
throw. Default is PAGETHROW(l2).

The program is compiled for run-tim e debugging with th e optional
ANIMATOR product, (See Chapter 7). Default is NOANIM.

FILES HARE

The program to be compiled contains additional FILESHARE syntax that
can be read only if you have the optional FILESHARE product.

RESTRICT
COMMIT
DERESTRICT

(or ga ni za tion)

Specifies the shared access mode for al 1 files with the organization
entered. Can only be used with the optional FILESHARE product. See
FILESHARE directive above and also Chapter 8.

2 - 76

RUN TIME DIRECTIVES

The command line syntax for running a CIS COBOL object program is as
follows:

RUN [-VJ [load param] [switch param] [link param] filename
[program params]

where:

-V inhibits the compatibility check between the compiler and RTS versions.

load param loads modules as follows:

switch param

link param

filename

+D

Interactive Debug

+A

ANIMATOR
Default (-A)

Indexed Se quential

-I

Nucleus

is of general format:

[< :t ~l [[,][J :t n2]. ..)]

nl and n2 are any program switch numbers (See Language
Reference Manual) in the range 0-7

D invokes the standard ANSI COBOL Debug module

+ or - sets the associated switch on or off

is the= (equal sign) symbol which is us ed to link the
program with the Run Time System so that it can be dir ectly
loaded. Note that it is import ant to rename th e SAVE file
generated to avoid it being ove rwritten a t the next use of
the= parameter. (Cannot be used with +A).

is the name of the file in which the intermediate code of t he
program to be loaded is stored

program params are any formats required to be passed to the program from the
Operato~ at load time. These are user sp ecific.

2 - 77

-

,_, APPENDIX B

COMPILE-TIME ERRORS

The error descriptions that correspond to error numbers as printed on
listings produced by the CIS COBOL compiler are as follows:

ERROR

01

02
03
04
05
06

07

08
09
10

22
23
24
25
26
27
28
29
30
31
32
33
34
36
37
38
39
40
42
43
44
45
46
47
48
49

DESCRIPTION

Compiler Error; consult your Technical Support
Service
Illegal format of data-name
Illegal format of literal or invalid use of 'ALL'
Illegal format of character
Data-name declared twice
Too many data or procedure names have been
declared - compilation abandoned
Illegal character in column 7, or continuation
line error
Nested COPY statement or unknown file specified
'.' missing
The statement starts in the wrong area of the
source line
'DIVISION' missing
'SECTION' missing
'IDENTIFICATION' missing
'PROGRAM-ID' missing
'AUTHOR' missing
'INSTALLATION' missing
'DATE-WRITTEN' missing
'SECURITY' missing
'ENVIRONMENT' missing
'CONFIGURATION' missing
'SOURCE-COMPUTER' missing
OBJECT-COMPUTER or SPECIAL-NAMES clause in error
'OBJECT-COMPUTER' missing
'SPECIAL-NAMES' missing
SWITCH Clause in error
DECIMAL-POINT Clause in error
CONSOLE Clause in error
Illegal currency symbol
'DIVISION' missing
'SECTION' missing
'INPUT-OUTPUT' missing
'FILE-CONTROL' missing
'ASSIGN' missing
'SEQUENTIAL' or 'RELATIVE' or 'INDEXED' missing
'ACCESS' missing on indexed or relative file
'SEQUENTIAL' or 'DYNAMIC' missing

2 - 78

so
51
52
53
54
SS
56
57 *
58 *
62
63
1\4

65
66
67
68
69
70

71
72
73
74

75
76

77

78

79

81
82
83
84
85
86
87
88
89

90

91
92

Illegal combination ORGANIZATION/ACCESS/KEY
Unrecognised clause in SELECT statement
RERU!-! ~lause contains syntax error
SAME AREA clause contains syntax error
Fila-name missing or illegal
'DATA DIVISION' missi~g
'PROCEDURE DIVISION' missing or unknown statement
'EXCLUSIVE', 'AUTOMATIC' or 'MANUAL' missing
Non-exclusive lock mode specified for restricted
file
'DivISION' missing
'SECTION' missing
File-name not specified in SELECT statement
RF.CORD SIZE integer missing
Illegal level number or level 01 required
FD qualification contains syntax error
'WORKING-STORAGE' missing
'PROCEDURE DIVISION' missing or unknown statement
Unrecognized clause in Data Description or
previous'.' missing
Incompatible clauses in Data Description
BLANK is illegal with non-numeric data-item
PICTURE clause too long
VALUE with non-elementary item, wrong data-type or
value truncated
VALUE clause in error or illegal for PICTURE type
FILLER/SYNCHRONIZED/JUSTIFIED/BLANK clause for
non-elementary item
Preceding item at this level has O or more than
8192 bytes
REDEFINES of different levels or unequal field
lengths.
Data Division exceeds 32K and data-item has
address above 7FFF
Data Description clause inappropr i ate or repeated
REDEFINES data-name not declared
USAGE must be COMP, DISPLAY or INDEX
SIGN must be LEADING or TRAILING
SYNCHRONIZED must be LEFT or RIGHT
J~STIFIED must be RIGHT
BLANK must be ZERO
OCCURS must be numeric, non- zero and uns i gned
VALUE must be a literal, numeric literal or
figurative constant
PICTCRE string has illegal precedence or illegal
char:icter
INDEXED data-name missing or already declared
Numeric edited PICTURE string is too large

2 - 79

-

~

1!11111!\

111111,l\

~

!*ii

"""'
l"7

'

*

101
102
103
104
105
106
107
108

109
110
111
112 *
113 *
115 *
116
117

118
119
120
141
142
143
144
145
146

147
148
149
150
151
152

153
154

157

160

Unrecognised verb
IF ••• ELSE mismatch
Data-item has wrong data-type or is not declared
Procedure name has been declared twice
Procedure nam~ is the same as a data-name
Name required
Wrong combination of data-types
Conditional statement not allowed; imperative
statement expected
Malformed subscript
ACCEPT or DISPLAY wrong
Illegal syntax used with I-0 verb
LOCK clause specified for file with lock mode
EXCLUSIVE
KEPT specified for unconunittable file
KEPT omitted for comittable file
IF statements nested too deep (maximum 8)
Structure of Procedure Division wrong (e.g.
DECLARATIVES not first)
Reserved Word missing or incorrectly used
Too many subscripts in one statement
Too many operands in one statement
Inter-segment procedure name declared twice
IF ... ELSE mismatch at the end of source input
Data-Item has wrong data-type or is not declared
Procedure name undeclared
INDEX name declared twice
Cursor address field not declared or not 4 bytes
long
KEY declaration missing or FD missing
STATUS declaration missing
FILE STATUS data-item has the wrong format
Paragraph to be ALTERed is not declared
PROCEDURE DIVISION in error
USING parameter is not declared in the linkage
section
USING parameter is not level 01 or 17
USING parameter is used twice in the parameter
list
Structure of Procedure Division wrong (e.g.
DECLARATIVES not first).
Too many operands in one statement

The error codes marked by an asterisk apply only when the optional
FILESHARE product is in use.

2 - 80

In addition to these numbered error messages, the following message can be
displayed with subsequent termination of the compilation:

FATAL I-0 ERROR: filename

where filename is the erroneous file.

Any intermediate code file produced is not usable.

The following conditions will cause this error:

Disk overflow
File directory overflow
File full
Impossible I-0 device usage

Other operating system dependent conditions can also cause this error.

NOTE:

You will notice that the numbers of the numbered error messages l isted
above are not continuous, i.e., there are gaps in the numbering. The
compiler should never have cau se to generate an error message with a
number not listed above. If you ever encounter such a number, consult
your Micro Focus Product Technical Support office.

2 - 81

APPENDIX C

RUN-TIME ERRORS

Run-time error messages are preceded by the name and segment number of the
currently executing intermediate code file.

There are two types of run-time errors: Recoverable and Fatal.

(a) Recoverable errors

If the programmer has specified the STATUS clause in the FILE-CONTROL
paragraph of a program error handling is the programmer's responsibility.
See Appendix F. This will generally only apply to errors that are not
considered fatal by the operating system.

(b) Fatal errors

All errors except those above are fatal. They may come from the operating
system or from the run-time system. Fatal errors cause a message to be
output to the console which includes a 3 digit error code and reference to
the COBOL statement subsequent to that in which the error occurred. These
fall into two classes:

Error

151
152
153
154
156
157
158
159
161
162
164

165

168
169
170
171

(i)

(ii)

Exceptions
These cover arithmetic overflow, subscript out of
range, too many levels of perform nesting.

I-0 errors
These exclude those for which STATUS is not selected
as above.

Description

Random read on sequential file
REWRITE on file not open 1-0
Subscript out of range
Perform nesting exceeds 22 levels
Invalid file operation
Object file too large
REWRITE on line-sequential file
Malformed line-sequential file
Illegal intermediate code
Arithmetic overflow or underflow
Specified CALL code not supplied or
Attempt to call a COBOL module recursively (i.e. when
is already active)
Incompatible releases of compiler and
run-time system
Memory management failure
Invalid indexed sequential file key length (>32 characters)
Illegal operation in Indexed Sequential
Attempt to read I-S record in output/extend mode

2 - 82

172
173
174
176
180

194
195
196

197
198
199
200

Attempt to delete I-S record in non I-0 mode
Attempt to write I-S record in input mode
Attempt to CALL/CANCEL an active program
Illegal inter-segment reference
COBOL file malformed

File size too large (>0.5MB)
DELETE/REWRITE not preceded by a READ
Relative (or Indexed) - Record number too large
(> 65535)
File save failure
Program load failure (using CHAIN)
Indexed sequential file name too long (>20 characters)
Insufficient space to load ANIMATOR

2 - 83

-
-

APPENDIX D

OPERATING SYSTEM ERRORS

These errors appear in the same format as CIS COBOL Run-Time errors;
conventionally error numbers 1-99 are reserved for the operating system. In
the following list fatal errors are marked with an asterisk.

Error

0

* 1
2
3
4
5
6

* 9

12
13

22

* 24

Description

No error
Insufficient buffer space
File not open when access attempted
Attempt to open more than 12 files simultaneously
Illegal file name
Illegal device specification
Attempt to write to input file

No room in diskette directory

Attempt to open file already open
Attempt to open for input a non-existant file

Illegal or impossible access mode to OPEN

Disk input-output error 1

Could be caused by physical surface damage, incorrect format or
invalid address marker.

2 - 84

r-

r-
,-
,-.

r-
COMMAND

,-
A data-ref val ,..
B

i- c val

r-
D data-ref

J'IIII. E

(118 G proc-ref

fll'I L

,- M name

,. N

0

f'IIM p

,. s data-ref

T proc-ref ,..
x ,..
$,.
I

,- val

r- .
;

fW,

ra

r-

APPENDIX E

INTERACTIVE DEBUG COMMAND SUMMARY

Change value at address given to val
(data division)

Execute until specified location changes

Display ASCII character corresponding
to val

Display 16 bytes from address given

Execute until specific location changes to specified
contents

Execute from current position until
given address is reached

Output carriage return/line feed to
console

Start definition of macro

Set relative addressing default to start of user area

Set relative addressing default to start of segment

Display current program counter

Set work register to address given

Trace all paragraphs executed up to
address (Procedure Division)

Execute one instruction

End macro definition

Display byte at address in work register

Change byte at address in work register
to val and increment register

Increment work register

Start comment - line up to carriage
return is ignored

Z - 85

where: data-ref 16 bit hex value r, , .. digits)
in data area

proc-ref 16 bit hex value (4 digits)
in code area

val 8 bit value (2 hex digits or
inverted commas and ASCII
char eg "A")

name single ASCII character -i

2 - 86

,.
I

APPENDIX F

CP /M DISK FILES

GENERAL

The disk file system used in CIS COBOL is the diskette based CP /M system
described in the IN'tRODUCTION TO CP/M FEATURES AND FACILITIES Manual. A
description of file creation and management is available in that
Introduction.

CIS COBOL offers sequential, relative and indexed organizations.

All file processing information is defined within an interactive CIS COBOL
program. File organization, access method, device assignment and allocation
of disk space are defined by the SELECT statement in the INPUT-DUPUT SECTION
of the ENVIRONMENT DIVISION and an FD entry in the FILE SECTION of the DATA
DIVISION.

SPECIFYING FILES

CIS COBOL offers fixed (compile time) file assignment and dynamic (run time)
file assignment facilities.

FIXED FILE ASSIGNMENT

The CP /M file name is assigned to the internal user file-name at compile
time as shown in the specifications that follow.

2 - 87

Enviromnent Division

In the FILE-CONTROL paragraph the general format of the SELECT and ASSIGN TO
statements is as follows:

General Format

~ file-ilame

~TO

Parameters

filename

iexternal-f ile-na.ne-li terall
/file-identifier I

r 5external-file-name-literal/ J
_' /file-identifier I

Can be any user-defined
CIS COBOL word (see User
Defined COBOL Words in Chapter
2)

f He-identifier See Run-Time File Assignment
later in this Appendix

external-file-name-literal Is a standard CP/M file name of
the following general format:

where:

drive

device

filename

! [drive] filename ,(extension]1
device I

LPT: ~
LST:
:LP:
:CI:
:CC:
CON:

The pre-established CP/M disk drive identifier A:
through P:
Devices other than disk as follows: 1

Line Printer

Keyboard Input
Screen Output
Console I-0

PUN:
:TP:
:HP:
:RDR:
:TR:
:HR:
:BB:

Punch Device

High Speed Punch

Reader Device

High Speed Reader
Byte Bucket

One through eight alphabetic or numeric characters (no
spaces)

extension - One through three alphabetic or numeric characters (no
spaces)

- The availability of any of these devices is dependent upon the
availability of the driver software for the device in your version
of CP/M,

2 - 88

-\

~1

-

--=--·

Examples or Fixed File Assignment

SELECT STOCKFILE
ASSIGN TO "B:WAREHS.BUY".

SELECT STOCKFILE
ASSIGN TO ":Fl: WAREHS. BUY".

Data Division

The file-name specified as above is then used in the File Description for
that program (see Tile File Description - Complete Entry Skeleton in Chapters
5, 6 and 7 of the CIS COBOL Language Reference Manual)

Procedure Division

The file-name specified as above is then also used in the OPEN and CLOSE
statements when the file is required for use in the program, (See THE OPEN
STATEMENT and THE CLOSE STATEMENT in Chapters 5, 6 and 7 of the CIS COBOL
Language Reference Manual),

RUN-TIME FILE ASSIGNMENT

The internal user file-name is assigned to a fil e -identifier (an
alphanumeri c user-defined COBOL Word), which automatically sets up a
PIC X(lS) data area in which to store the external CP/M file name. The
external CP/M file name can then be stored in this data area in the
Procedure Division by the user, and can be altered during the run as
required.

The following specifications are required for run-time assignment:

Environment Division

In the FILE-CONTROL paragr aph the general format of the SELECT and ASSIGN TO
statements is as follows:

General Format

SELECT filename

ASSIGN TO fileidentifier

Param e ters

file-name

file-identifier

2 - 89

Can be any user-defined
CIS COBOL word. (See User
defined COBOL Words in Chapter
2 of the CIS COBOL Language
Reference Manual),
Is any user-defi ned CIS COBOL
word (See User Defined COBOL
Words in Chapter 2 of the
CIS COBOL Language Reference
Manual),

Example of Run-Time File Assignment

SELECT STOCKFILE

ASSIGN STOCKNAME.

Data Divisi.on

The file-name specified as above is then used in the File Description for
that program (see THE FILE DES~IPTION - COMPLETE ENTRY SKELETON in Chapters
5, 6 and 7 of the CIS COBOL Language Reference Manual).

Procedure Division

The external CP /M file name of the required file (see under FIXED FILE
ASSIGNMENT above for format) is then stored as required in the
file-identifier location specified above by the user program before the file
is OPENed for use.

EXAMPLE:

MOVE
OPEN

MOVE
OPEN

CLOSE

"B:WAREHS, BUY" TO STOCK-NAME.
INPUT STOCK-FILE,

STOCK-FILE.

"B:WAREHS.SEL" TO STOCK-NAME.
INPUT STOCK-FILE.

STOCK-FILE.

MOVE ."B:PROGA.SRC" TO file-identifier.
OPEN INPUT file-name.

The CP/M file name could have been entered via an ACCEPT statement i.e. by
an operator, or stored as any other va _riable data.

In this way different external files ca{I be used as a common internal user
file during any run of a program, but care is required to ensure that the
correct file is al ·located at any given time.

NOTE:
The device assignment B: in the file name above can be replaced by the
format :Fl: for compatability with other operating systems.

2 - 90

-

-

BLOCK LENGTHS

CP/M uses fixed-length 'CP/M records 1 (blocks) on disk of 128 bytes per
block. Since CIS COBOL permits block lengths other than 128 bytes, a
trailer block is appended by CIS COBOL to CP/M files. The last two blocks
in a file appear as follows:

128 bytes

Data bytes Padding

LAST DATA RECORD

I o

:-21 b tes-:-2 b tes-!-1 b te-!-----104 b ' tes~
Block Byte

Bytes Padding Information Number Padding

TRAILER RECORD

The last data block is padded beyond the last data byte with EOF characters
(lAH) up to 128 bytes. If the last data block is full i.e. 128 bytes long,
then no padding is inserted. The trailer block contains the position at
which the next data byte would be inserted in 'byte number' and 'block
number Within file' format.

An important corollary of this is that if the CP /M utility PIP is used to
move CIS COBOL files it must treat them as binary files. This means either
renaming them to have the extension .COM, or using the "[OJ" parameter
(alpha 0).

Files read as line-sequential need not possess the trailer block and need
only be terminated by using the standard CP/M EOF convention. This allows
source programs to be prepared using the CP/M editor.

CIS COBOL DISK FILE STRUCTURES UNDER CP/M

CIS COBOL offers four types of file organization for use by the COBOL
programmer - Sequential, line sequential, relative and indexed sequential
(ISAM). A file is a set of records. A record is a set of contiguous data
bytes which are mapped into hardware sectors with which they need not
coincide, i.e. a record can start anywhere within a sector and can span
hardware sector boundaries. The data is held as follows:

SEQUENTIAL

Sequential files are read and written using fixed length records, the length
used being that of the longest record defined in the COBOL program's FD.

2 - 91

Nonnally the space occupied per record is the same as the program record
length and data of any type may be held on the file: this does not however
apply if WRITES are done using BEFORE or AFTER ADVANCING, as extra control
characters are inserted and the data cannot then be read back correctly.

The RTS writes a trailer block to an output file to mark the precise
position of the end of data, and expects to find one on an input file.
There are no limits on file size beyond those imposed by the operating
system and/or hardware.

LINE SEQUENTIAL

Line sequential file fonnat is intended to cater for text (ASCII) files as
generated by editors and other similar utilities. This is the only type of
CIS COBOL file fonna t in which variable length records are supported: the
two-bvte combination ODOAH (carriage return, line feed) is used as a record
delimiter, and any single byte lAH (control-Z) as an unconditional file
terminator. On input the CR-LF is removed and the record area padded out
with spaces as necessary: on output any trailing spaces in the program's
record area are ignored. Use of ADVANCING phrases other than BEFORE l
causes the output of additional device control characters. A file created
in this way can still be read by a program, but the additional control
characters are not filtered out and will appear in the record area.

RELATIVE

Relative file organization provides a means of accessing data randomly by
specifying its position in the file. Records are of fixed length, the
length used being that of the longest record defined in the program's FD.
To designate whether or not a record logically exists, two bytes are added
to the end of each record: these contain ODOAH if the record logically
exists on the file and OOOOH if it does not. The total length of a file is
detennined by the highest relative record number used; CIS COBOL imposes a
limit of 65535 on this value independently of operating system and/or
hardware constraints. Data of any type may be held on the file; the RTS
uses a trailer block to determine the precise position of the end of data.

INDEXED SEQUENTIAL

An indexed sequential (ISAM) file occupies two CP/M files on disk: both are
in a relative file format, one containing the data and the other all
indexing and free space information - the index (.IDX) file.

The name for the index file is derived from the name supplied for the ISAM
fil.:, by substituting the extension - ' .IDX' in place of any supplied in the
ISAl1 file name. The name for the D~ta file is the same as that supplied for
the ISAM file. This means that different ISAM files cann0t be distinguished
purely by a change in the file-name extension and also t3at it is advisable
to refrain from using the extension '.IDX' in other contexts.

e;g. 'CLOCK.FLE' as an ISAM file-name produces ·m index 'CLOCK.IDX' in
addition to the CLOCK.FLE data file

2 - 92

-

lilll.

The index is built up as an inverted tree structure which grows in height as
records are added: the number of index file accesses required to lgcate a
randomly selected record depends principally on the number of records on the
file and the 'keylengths'. An approximate guide to the number of levels in
the tree (and hence the number of accesses required) is

index levels logk (number of records)

where k 150
keylength + 2

but will vary slightly on the order in which records are added and deleted.

Faster response times are obtainable when reading a file sequentially, but
only if other ISAM operations do not intervene.

The size (in bytes) of an ISAM file is approximately related to the maximum
number of records it contains as follows :

NOTE:

data= (record length+ 2) * max. no of records

l.·ndex = no of records
k _ l * 256 where k is as defined above

The necessity of taking regular back-up copies of all types of files
cannot be emphasised too strongly and this should always be regarded as
the main safeguard. There are however situations with indexed files
(e.g. media corruption) that can lead to only one of the two files
becoming unuseable. If the index file is lost in this way, it is
normally possible to recover data records from just the data file
(although not in key sequence) and cut down on the time lost due to a
failure. As an aid to this, all unused data records are marked as
deleted at the relative file level by appending two bytes to each
record which contain LOW-VALUES. For undeleted records these bytes
contain the characters Carriage Return and Line Feed. The recovery
operation may therefore be done with a simple COBOL program by defining
the data file as ORGANIZATION SEQUENTIAL ACCESS SEQUENTIAL with records
defined as two bytes longer than in the ISAM file description. The
records are then read sequentially, the data MOVEd from the sequential
file record. area into the indexed (ISAM) file record area, and written
to a new version of the indexed file; except for those records with
LOW-VALUES in the last two (extra) bytes which records should be
discarded. Note that these two bytes (containing carriage-return and
line-feed characters in a required record) are not written to the ISAfl
file on recovery, by virtue of the record length discrepancy of 2 bytes
in the record definitions.

2 - 93

FILE ERROR STATUS

If a programmer has specified the STATUS clause in the FILE-CONTROL
paragraph in a program the operating system error number as returned by CP/M
is available in the Status Key 2 byte in the event of a file error (See the
CIS COBOL Language Reference Manual). If it is required to display this
status with its correct decimal value, careful redefinition of data-items is
required in order to avoid truncation of the value. This is because the
facility that enables the storage of a nonnumeric valu,~ greater than
decimal 99 as a hexadecimal value is an extension to the ANSI COBOL standard
X3.23 (1974) but the rules for moving or manipulating such data are
retricted by the standard to a maximum of decimal 99.

The example that follows illustrates one method of retrieving the value of
status key 2 for display purposes.

Note how truncation has been avoided be redefining the two status bytes as
one numeric data item (length two bytes) capable of storing up to four
decimal digits.

•• CIS COBOL V4 .4

** OPTIONS SELECTED
** RESEQ ••
000010 fillVIRONMENT DIVISION.
000020 INPUT-OUTPUT SECTION.
000030 FILE-CONTROL.

B:STATUS.CBL

000040 SELECT FILEl ASSIGN "TST .FIL"
000050 STATUS IS FILEl-STAT.
C00060 DATA DIVISION.
000070 FIL~ SECTION.
000080 FD FILE! •
000090 01 Fl-REC PIC X(80).
000100 WORKING-STORAGE SECTION.
000110 01 FlLEl-STAT.
000120 02 SL PIC X.
000130 02 52 PIC X.
000140 01 STAT-BIN REDEFINES FILEL-STAT PIC 9(4) COMP.
000150 01 DISPLY-STAT.
000160 02 Sl-OISPL PIC X.
000170 02 FILLER PIC X(3).
000180 02 S2-D'.SPL PIC 9999.
000190 PROCEDURE DIVISION.
000200 OPEN Ufl'UT FILE!.
000210 IF SI ~OT • 9 GO TO PARA!.
000220
000230 MOVE 51 TO 51-DISPL.
000240 MOVE LOW-VALUES TO SL
000250 MOVE STAT-BIN TO 52-0ISPL.
000260 DISPLAY DISPLY-STAT.
000270 PARA!.
000280 STOP RUN.
000290
000300
** CIS COBOL V4.4 REVISION O

COMPILER COPYRIGHT (C) 1978,1981 MICRO FOCUS LTD
URN

PAGE: 0001

0118
0118
0118
0184
0186
OlBD
OLBD
OlBD
OIBO
020F
020F 00
020F 00
0210 01
020F 00
0211 02
0211 02
0212 03
0215 06
0000
OO!A
OO!E
0030
0030
0035
003A
0041
004C 00
0040
004E
004E

MB/1178/BL

** ERRORS•OOOOO DATA•00537 CODE•00231 OICT•0021"!6;17445/17651 GSA FLAGS• OFF

2 - 94

-

FILEMARK UTILITY PROGRAM

The FILEMARK Utility program is used to write the trailer block that is
required by CIS COBOL, in situations where it is not present. The program
writes the trailer block on to the end of any specified file, without
checking the internal format of that file. It is possible, therefore, to
append a CIS COBOL trailer block to any CP/M file.

The program checks whether a CIS COBOL trailer block is already present, and
if so, advises the operator by a displayed riessage (see ERROR CONDITIONS
below), otherwise it appends a trailer block. FILEMARK can therefore be
used to check for the presence of a trailer block.

OPERATING INSTRUCTIONS

FILEMARK is supplied as a directly loadable program to run under CP/M. It
is loaded and run as follows:

FILEMARK [drive:] filename<<
where: drive is a CP/M disk drive identifier i.e. A thru P .

filename is a standard CP/M filename in the format:
name.ext

The FILEMARK program is interactive in operation and displays messages
during successful running as follows:

FILE FOUND; PROCESS BEGUN

CIS COBOL EOF RECORD SUCCESSFULLY ADDED TO FILE

FILE CLOSED; PROCESSING SUCCESSFULLY COMPLETED

Error Conditions

Any error condition that occurs during running of FILEMARK is conveyed to
the user by a self-explanatory message. Error messages are as follows:

FILE NOT FOUND, RUN ABANDONED
indicates that the specified filename does not exist on the specified
drive.

FILE IS MAX. SIZE THUS NO FURTHER RECORDS CAN BE ADDED; RUN ABANDONED
indicates that the addition of a trailer record would cause the file to
exceed the maximum size allowed by CP/M.

ERROR DURING DISK READ; !:UN ABANDONED
indicates that a read failure has occurred during the scan of the file.

2 - 95

NOTE:

ERROR WHEN WRITING CIS COBOL EOF RECORD; RUN ABANDONED
indicates that a write failure has occurred while attempting to write
the trailer record.

ERROR DURING FILE CLOSURE; RUN ABANDONED
indicates that a CP/M file closure procedure has failed and the file is
not usable.

OPEN FAILURE; RUN ABANDONED
indicates that a CP /M file opening procedure has failed and the file
cannot be opened for processing.

CIS COBOL EOF RECORD ALREADY EXISTS.
indicates that the FILEMARK program has detected a standard CIS COBOL
trail er lab e l already present. The program terminat es without writing
anything to disk.

The presence of more than one CIS COBOL trailer label at the end of a
file can cause problems during processing. For normal use of the file,
only one trailer label record is required.

2 - 96

~---

APPENDIX H

EXAMPLE CONFIGURATION OF A HYPOTHETICAL CRT
SPECIFYING TAB STOP MODIFICATION

B>CONFIG RUND.COM
**
CIS COBOL RUN TIME SYSTEM (RTS) CONFTGURATOR VJ. 00
COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD
**

VERSION n.n RF.VISION nnn USF.R REFERENCE NUMBER XX/nnnn/ XX

THE RTS IS SUPPLIED WITH COLUMN TAB STOPS IN COLUMNS:-
08,16,24,3 2 , 40 , 48,56, 64, 72 DO YOU WI SH TO MODIFY THESE? INPUT ONE OF THE
FOLLOWING: 'YES' 'Y' 'NO' 'N' >N

THE RTS PROVIDES THE FACI LITY TO INCORPORATE ASSEMBLER CODE THAT MAY
BE ENTERED BY YOU FROM THE COBOL "CALL" VERB.
DO YOU WISH TO INCLUDE SUCH CODE?
INPUT ONE OF THE FOLLOWING: 'YES' 'Y' 'NO' 'N'
>N

YOUR RUN TIME SYSTEM HAS BEEN CONFIGURED

2 - 97

-r· _,

-J

APPENDIX J

EXAMPLE CONFIGURATION SPECIFYING USER SUBROUTINES

B>CONFIG RUNR.COM
**
CIS COBOL RUN TIME SYSTEM (RTS) CONFIGURATOR V3.00
COPYRIGHT (C) 1978, l 982 MICRO FOCUS LTD
**

VERSION n.n REVISION nnn USER REFERENCE NUMBER XX/nnnn/XX

THE RTS IS SUPPLIED WITH COLUMN TAB STOPS I~ COLUMNS:-
08,16,24,32,40,48,56,64,72
DO YOU WISH TO MODIFY THESE,
INPUT ONE OF THE FOLLOWING:-'YES' 'Y'
>N

'NO' 'N'

THE RTS PROVIDES THE FACILITY TO INCORPORATE ASSEMBLER CODE THAT HAY
BE USED BY YOU IN THE COBOL "CALL" VERB.
DO YOU WISH TO INCLUDE SUCH CODE,

INPUT ONE OF THE FOLLOWING:-' YES' 'Y'
>Y

'NO' 'N'

IN THAT CASE WE MUST DECIDE WHERE IT IS TO GO.
DO YOU WISH TO USE THE DYNAMIC DEBUG FACILITY WITH THIS RTS,
INPUT ONE OF THE FOLLOWING:-'YES' 'Y' 'NO' 'N'
>N

DO YOU WISH TO USE ANIMATOR?
INPUT ONE OF THE FOLLOWING:- 'YES' 'Y' 'NO' 'N'
>N

DO YOU WISH TO USE THE INDEXED SEQUENTIAL PACKAGE,
INPUT ONE OF THE FOLLOWING: - 'YES' 'Y' 'NO' 'N '
>N

HOW MANY BYTES DOES YOUR ASSEMBLER CODE USE, (ENTER A DECIMAL NUMERIC
STRING)
>264

PLEASE ARRANGE TO LOCATE YOUR CODE AT 4l9CH.

YOUR RUN TIME SYSTEM HAS NOW BEEN CONFIGURED

2 - 98

2 - 99

APPENDIX K

EXAMPLE CONFIGURATION IN WHICH NO CRT TAILORING IS PERFORMED

B CONFIG
**
CIS COBOL RUN TIME SYSTEM (RTS) CONFIGURATOR V3.00
COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD
**

ENTER THE FILE-NAME CONTAINING THE RTS TO BE CONFIGURED.

>RUNA.COM
VERSION n .n REVISION nnn USER REFERENCE NUMBER XX/ nnnn/ XX

THE RTS IS SUPPLIED WITH COLUMN TAB STOPS IN COLUMNS:-
08,16,24,3 2 , 40,56,64,72
DO YOU WISH TO MODIFY THESE,
INPUT ONE OF THE FOLLOWING: 'YES' ' Y' 'NO' 'N'
>N

THE RTS PROVIDES IHE FACILITY TO INCORPORATE ASSEMBLER CODE THAT MAY
BE ENTERED BY YOU FROM THE COBOL "CALL" VERB.
DO YOU WISH TO INCLUDE SUCH CODE?
INPUT ONE OF THE FOLLOWING:- 'YES' Y'' 'NO' 'N'
>N

YOUR RUN TIME SYSTEM HAS BEEN CONFIGURED

2 - 100

liii
J

APPENDIX M

EXAMPLE OF USER RUN TIME SUBROUTINES

*******************x***~·*********
*
*

;* THIS IS AN EXAMPLE OF USER CALL CODE SUPPLIED PURELY FOR GUIDANCE OF THE
;* USER TO ENABLE THE MECHANICS OF CALL CODE INSERTION TO BE BETTER
;* UNDERSTOOD.
; * THE CODE IS DESIGNE:l TO BE A USEFUL EXAMPLE OF CALL, AND IF IMPLEMENTED
;* WILL ALLOW THE COBOL PROGRAMMER TO CREATE 16 BIT BINARY QUANTITIES FROM
;* UP TO 5 ASCII DIGITS, AND VICE VERSA. THE USE IS EXPLAINED IN MORE DEIAIL
;* AT THE HEAD OF EACH ROUTINE.
•* ' ; * MICRO FOCUS LTD. HAS TAKEN EVERY PRECAUTION TO ENSURE THE ACCURACY OF
;* THESE ROUTINES, BUT CANNOT BE HELD LIABLE IN ANY WAY FOR~ ERRORS OR
;* OMISSIONS IN THEM.
;*
;******************''**
;* THE MODULE MUST BE LOCATED AT THE ADDRESS SPECIFIED BY CONFIGURATOR
;* WHEN THE RTS IN WHICH THE CODE IS TO RESIDE WAS CONFIGURED. (SEE
;* OPERATING GUIDE, SECTION 5).
•*
' BASE:

•* .
•* '
;*
•* '

EQU 04404H

ORG BASE

;REPLACE 04404H BY THE ADDRESS
;GIVEN BY CONFIGURATOR.

;SET THE BASE ADDRESS

;* NOW FOLLOWS THE CALL CODE IDENTIFICATION TABLE. THIS IS A TABLE OF
;* ADDRESSES OF THE ENTRY-POINTS TO THE ROUTINES. PRECEDED BY A BINARY
;* 8 BIT ITEM SPECIFYING THE HIGHEST AVAILABLE ROUTINE NUMBER
;*
•* .
CALTOP: DB MAXNO

DW O
DW DECBIN

ASCII TO BINARY
DW BIND EC

DECIMAL ASCII
MAXNO: EQU ($-CALTOP-3)/2
•*
' •* .

;HIGHEST AVAILABLE CALL ROUTINE.
;CALL "OO" (DOES NOT EXIST)
;CALL 1101 11 - DECIMAL

;CALL "02" - BINARY TO

;LET THE ASSEMBLER DO THE WORK

; * NB. ALTHOUGH THE USE Of CALL 1100 11 IN THE ABOVE EXAMPLE WOULD CAUSE
;* THE RTS TO ISSUE THE FOLLOWING ERROR:-
;* 164 - CALL CODE DOES NOT EXIST
;* THE USER IS AT LIBERTY TO PROVIDE HIS OWN CODE. BY PLUGGING IN
;* THE APPROPRIATE ROUTINE ADDRESS.
;·.,.;
;* SIMILARY, OTHEP ROUTINES MAY BE ADDED BY INCREASING THE NUMBER
; * OF ADDRESSES SPECUIED. IF THESE ARE ADDED BEFORE THE MAXNO EQUATE.
;* THEN THE BYTE AT CALTOP WILL ALWAYS BE CORRECT
•* .

2 - 101

;*ROUTINE:
•* •

DECBIN

;*CALLING SEQUENCE:
;* CALL "Ol" USING PARA! PARAZ PARA3.
;*
; *FUNCTION:
;*
;*
•* .
; *PARAMETERS:
•* .
•* • ·* .
•* .
•* .
•* .
·* .
•* .
;*
•* .

THIS ROUTINE CONVERTS A STRING OF DECIMAL (ASCII)
DIGITS INTO A 16 BIT BINARY QUANTITY. IT IS VERY LOW LEVEL
IN THAT IT EXPECTS A POSITIVE DECIMAL VALUE

PARAl - ADDRESS OF LENGTH OF DECIMAL STRING
HELD AS l BYTE ASCII DIGIT (NOT CHECKED)
THIS ADDRESS WILL RF. NO, 2 ON STACK

PARAZ - ADDRESS OF DECIMAL STRING
THIS ADDRESS WILL BE IN B,C ON ENTRY

PAll/\3 - ADDRESS OF RESULT AREA •
SPECIFIES A 2 BYTE AREA
THIS ADDRESS WILL BE IN D,F ON J,NTRY

;*VALUES RETURNED: 16 BIT RESULT IN PARA3
•* .
;*
•* .
DECBIN:

POP
XTHL

·* .
MOV
ANI

PUSH
PUSH
POP
LXI

DEClO:
PUSH
DAD
MOV
MOV

DAD
DAD
DAD

H

A,M
OFH

D
B
D
H,O

PSW
H
B,H
C,L

H
H
B

;GET RETURN ADDRESS OFF STACK
;GET ADDRESS OF PARAl
;PUTTING RETURN ADDRESS BACK.

;PUT IT IN ACCUMULATOR
;CONVERT TO BINARY

;SAVE ADDRESS OF RESULT
;MOVE STRING REF
; INTO D,E
;HL 1 BINARY ACCUMULATOR

SAVE THE COUNT
BINARY ACCUMULATOR *2

AND MOVE I T INTO B,C

;BINARY ACCUMULATOR *4
*8

*8 + *2 1 *10
(IE . BX+ ZX l lOX)

,-----------------------

2 - 102

LDAX D ;GET THE DECIMAL CHAR
INX D
ANI OFH ;CONVERT TO BINARY CHAR
MVI B,OH
MOV C,A
DAD B ;ACC + CHAR
POP PSW
DCR A ;KEEP COUNT
JNZ DEClO

*
* NOW STORE RESULT IN USER'S AREA.
*

XCHG ;PUT RESULT IN D,F
POP H ;GET ADDRESS OF RESULT AREA
MOV M,D ;STORE MS BYTE
INX H
MOV 11,E ;STORE IS BYTE
RET

•* .

2 - 103

;*ROUTINE:
•* '

BIND EC

;*CALLING SEQUENCE:
;* CALL 110211 USING PARA! PARA2.
•* ' ; *FUNCTION:
•*
' •*
' •* ' ; *PARAMETERS:
•* ' ;*
•* ' •* ' •*
'

TAKES THE BINARY QUANTITY ADDRESSED BY PARA! AND CONVERTS
IT INTO A 5 DIGIT DECIMAL (ASCII) NO. THE RESULT IS PLACED
IN THE AREA SPECIFIED BY PARA2.

PARA! 1 ADDRESS OF 16 BIT (2 BYTE) QUAN7ITY.
WILL BE IN REG B,C ON ENTRY

PARA2 1 ADDRESS OF 5 BYTE RESULT AREA.
WILL BE IN REG D, E ON ENTRY

;*VALUES RETURNED:
•* ' •* '
BINDEC:

;*

;*
CN25:

CN30:

PUSli
POP
MOV
INX
MOV
LXI
PUSH
LXI
PUSH
LXI

PUSH
LXl
PUSH
LXI
PUSH

MVI

POP
PUSH
DAD
JNC
INR

PUSH
POP
JMP

5 DIGIT ASCII VALUE IN PARA2.

ll
H
B,M
H
C,M
H,O
H
H,-10
H
H,-100

H
H,-1000
H
H,-10000
H

A,30H

H
H
B
CN40
A

H
B
CN30

;GET VALUE ADDR
; IN H,L
;VALUE

IN
; B,C
;PUSH CONSTANTS

ON TO
STACK
FOR USE
DURING

BINARY TO DECIMAL COVERSION.

;D,E 1 ADDRESS OF RESULT FIELD

;SET TALLY TO ,~Cll Z£RO

;GET THE CONSTANT
;RESTORE IT
;SUBTRACT FROM SOURCE OP
;ITS GONE NEGATIVE
;INC TALLY

;REPLACE B,C WITH
NEW RESULT

2 - 104

!Nil
I

CN40:
POP H ;CLEAR CONSTANT OFF STACK
STAX D ;STORE TALLY IN RESULT FIELD
INX D ;INC RESULT ADDR POINTER
POP H ;ANY MORE CONSTANTS .
MOV A,L
ORA H
J Z CNSO ;NO - FINISH OFF
PUSH H ;YES - RESTORE IT
JMP CN25

C50:
HOV A, C ;INSERT UNITS
ADI BOH ;CONVERT TO ASCII
STAX D
RET ;RETURN

*
*
*

,fiiiiil

2 - 105

'"'ill
L ..

APPENDIX N

EXAMPLE USE OF RUN-TIME SUBROUTINES

**CIS COBOL V3.3 CALLEX.CBL PAGE: 0001
**
000010 IDENTIFICATION DIVISION
000020 PROGRAM-ID CALL-EXAMPLE.
000030*
000040*
000050*
000060*
000070*

This dummy program has been produced by Micro Focus
as an example of the way in which the supplied CALL
code routines may be used.

000080 DATA DIVISION.
000090 WORKING-STORAGE SECTION.
000100 01 ROUTINE-NAMES
000110 02 DECIMAL-BINARY
000120 02 BINARY-DECIMAL
000130*
000140 01
000150
000160
000170
000180*
000190
000200
000210*

PARAMETER-FIELDS
02 DECIMAL-NUMBER-LENGTH
02 DECIMAL-NUMBER
02 BllsARY-RESULT

02 BINARY-NUMBER
02 DECIMAL-RESULT

000220 PROCEDURE DIVISION.

PIC X(2)
PIC X(2)

VALUE "Ol".
VALUE "02".

PIC 9 VALUE 4.
PIC 9(4) VALUE 1234.
PIC X(2).

PIC X(2)
PIC 9(5).

VALUE X"04D2".

000230* The following CALL will convert the 4 digit numeric field
000240* DECD1AL-NUMBER to a 16 bit binary quantity in BINARY-RESULT.
000250**
000260 CALL DECIMAL-BINARY USING DECIMAL-NUMBER-LENGTH
000270 DECIMAL-NUMBER BINARY-RESULT.
000280**
000290* BINARY-RESULT now contains the binary number 0402.
000300*
000310* The following CALL will convert the 16 bit binary field
000320* BINARY-NUMBER to a 5 digit DECIMAL-RESULT
000330***
000340 CALL BINARY-DECIMAL USING BINARY-NUMBER DECIMAL-RESULT.
000350***

OOOF
OOOF
OOOF
OOOF
OOOF
OOOF
OOOF
OOOF
OOOF
OOOF
OOOF
OOll
0013
0013
0013
0014
0018
OOlA
OOlA
OOlC
0021
0000
0000
0000
0000
0000
0000
OOOA
OOOA
OOOA
OOOA
OOOA
OOOA
OOOA
0012

000360* DECIMAL-RESULT now contains the value 01234.
**CIS COBOL V4.2 COMPILER COPYRIGHT (C) 1978 MICRO FOCUS LTD

0012
URN AA/3999/AB

**
**ERRORS=OOOOO DATA=00033 CODE=00043 DICT=00188:29624 END OF LIST

2 - 106

~ __ ,

!"Bl
I

2

APPENDIX P

CONSTRAINTS

LINE SEQUENTIAL ORGANIZATION

1.1

1.2

1.3

Any file that is intended ever to be dumped to a line
printer should be given Line Sequential organisation, or
sequential organization with BEFORE/AFTER clauses
subsidiary to every WRITE statement.

The Carriage Return (CR) and Line Feed (LF) characters
that terminate a record (i.e . line) are exchanged by the
Run Time System for padding with spaces on record input.
Conversely trailing spaces are replaced by CR LF on
record output.

Line sequential files were designed to hold ASCII data
only. COMP data that contains bytes with a value of lAH
or byte pairs of value ODOAH must not be used in Line
Sequential files.

FILE USAGE

2.1

2 .2

No more than 13 files may be open at any one time,
excluding console input and output and line printer
files. Remember that one Indexed Sequential file counts
as two files when opened; also one of these 13 files is
required for overlay loading or the calling of a
sub-program . The overlay or sub-program file is open
only during execution of the GO TO, PERFORM or CALL
statement that causes the load. Note that another of
th e 13 files is requir ed when a progra m is to be
debugg ed using the ANIMATOR debu ggi ng tool.

CIS COBOL source files under CP/M must not contain lines
greater than 80 characters, nor must the y contain "Tab"
or any other control characters (i . e., OOH t hro ugh lFH).

3 UNSUCCESSFUL COMPILATION

The generat ed intermediate code fr om any unsuccessful
compilation should not be used. The intermediate code file
should be deleted and the source code corrected and
recompiled.

2 - 10,

4 LIMITS NOT SPECIFIED IN THE DOCUMENTATION

4.1

4.2

4.3

The maximum length of the Data Division in a CIS COBOL
program is 32K bytes. The total length of all Linkage
Section items is included in this figure although memory
for them is not required at run time.

The maximum length of the Procedure Division is 32K
bytes although the actual amount of code is permitted to
exceed this value if it is overlaid (segmented),

The maximum number of records that may be accommodated
in a relative or indexed file (assuming that disk spac e
is available) is 65,535.

5 REDECLARATION OF AN INCORRECT DATA DECLARATION

If there is an error in a data declaration the appropriate
compiler error message for the error is displayed,
Subsequent data-declarations may then be ignored by the
compiler resulting in spurious e rror mes sag es bei ng generated
if such data-items are referred to in the program.

6 INSPECT STATEMENT

8

The following restriction applies to items to be inspected:
They must not be in a Linkag e Section

COMPILER SIZE INFORMATION

The Data Division and code s1z1ngs output from the compiler
do not take into account an overhead that is required if the
program is segmented. This overhead is variable and an
approximate guide is to a llow 60 byt es over head for the root
segment and 30 byt es additional overh ea d for each overlay.

I-0 ERROR HANDLING

CIS COBOL offers 3 mechanisms for handling file I-0 errors:

a. Use of AT END or INVALID KEY clauses as appropriate .

2 - 108

-

la I .

(iiiiiiil
I

b.

c.

Declaratives to handle AT END or INVALID KEY conditions
where the appropriate clause has not been specified.
(Note that no other errors will be passed to the
Declarative routines).

Use of FILE STATUS key checks. If no status field is
defined, status byte one '9' errors cause a message to
be displayed on the console and the Run Time System to
terminate. If a status field is defined, all errors are
returned to the user program and it is the programmer's
responsibility to check for any problems, and proceed
accordingly. A sample program enabling the return value
to be displayed as a decimal CP/M error number is
provided in the CIS COBOL CP/M Operating Guide.

2 - 109

~
I

Micro Focus Ltd.

CIS COBOL

ANIMATOR

OPERATING GUIDE

Version LO

Issue 2
May 1982

WELCOME TO ANIMATOR!

This manual describes your ANIMATOR software which enables you to
animate your Micro Focus COBOL application programs with the COBOL
source code in front of you on the screen. You can activate parts of
the program to suit yourself and at selected speeds and examine data
items at break-points or even during running. You can examine and de bug
your programs using only the source code with no need to refer to
details of the object code.

© 1982 by Micro Focus Ltd.

3 - 2

lllllii1 ..

lllillii1 _,

RELATED PUBLICATIONS

Descriptions of the Acorn COBOL Products are contained in the following
manuals:

CIS COBOL Language Reference Manual
CIS COBOL Operating Guide specific to your Operating System.

AUDIENCE

This manual is intended for COBOL programmers using Micro Focus COBOL
development systems.

NOTATION IN THIS MANUAL

Headings are presented in this manual in the following order of
importance:

CHAPTER n
Chapter Heading

TITLE

ORDER ONE HEADING f .
ORDER TWO HEADING Text 3 lines down
Order Three Heading

Numbers one (1) to nine (9) are written in text as letters e.g.
one.
Numbers ten (10) upwards are written i n text as numbers e.g. 12.

3 - 3

~

~
... :

TABLE OF CONTENTS

CHAPTER 1

INTPODUC T ION

GENERAL DESCRIPTION
GETTING STARTED WITH ANIMATOR

ISSUE DISK
FIRST STEPS

Compilation
Running with ANIMATOR

CIS COBOL FACILITIES NOT AVAILABLE WITH ANIMATOR

ANSI COBOL DEBUG MODULE
ALTER STATEMENT
COMMAND LINE PARAMETERS

CHAPTER 2

PREPARING FOR ANIMATION

COMPILATION

RUNNING ---
CHAPTER 3

OPERATING COMMANDS

DETAILED COMMAND DESCRIPTIONS

SOURCE CODE WINDOW MANIPULATION

The S(c .e en) Command
The F(ind) Command

EXECUTION AND ANIMATION CONTROL

The B(reakpoint) Command
The E(xecute) Command
The L(evel) Command
The P(-c) Program Count er Command

3 - 4

3-6
3-8

3-8
3-8

3-8
3-10

3-12

3-12
3-12
3-12

3-13

3-13

3-14

3-15

3-15
3-16

3-1 7

3-17
3-17
3-19
3-19

1-1

EXAMINATION AND AMENIJM£NT OF DATA

The D(isplay) Command
The Q(uer1) Command
The M(onitor) Command

USER SCREEN DISPLAY

The U(ser) Command

APPENDIX A

ANIMATION OPTION COMMAND SUMMARY

FIGURES

Title

System Flowchart

3 - 5

3-20

3-20
3-20
3-21

3-21

3-21

Page

3-7

~
I

~
!

CHAPTER 1

INTRODUCTION

GENERAL DESCRIPTION

ANIMATOR is a COBOL oriented debugging tool for use with a Micro Focus
COBOL product.

The main aim of ANIMATOR is to free the COBOL programmer from the need
to be aware of the internal representations of either data or procedural
code, so that even a trainee programmer already has the knowledge
necessary to debug his programs effectively.

This is achieved by using the screen as a "window" into the source COBOL
program and "animating" execution by moving the cursor from statement to
statement as execution proceeds. Speed of execution can be varied; the
user may also switch off animation thus allowing rapid execution up to
the area of interest.

The user can interrupt execution at any point, either by defining
break-points or dynamically simply by pressing the space-bar on the
keyboard. Whilst execution is suspended the user can easily examine any
part of the source code by means of simple commands to refresh the
screen display. This means that it is not even necessary to have a
printed compilation listing in order to debug a program.

Various other debugging functions are available, invoked by pressing a
key. Only the top 20 lines of the screen are used for the display of
source code, the bottom area being used to display menus of available
commands, some of which invoke subordinate command menus.

Where debugging functions require reference to either data items or
procedural statements this is achieved by the user moving the cursor to
"point" at the appropriate place in the source code. Alternatively data
items can be referenced by actually typing the COBOL data-name.

Where control of ANIMATOR requires more keyboard input than simply
pointing with the cursor or pressing one of the displayed command
chara c ters, COBOL syntax is used. For instance, replacement of data
item values is achieved by typing that value in COBOL literal format
(i.e. non-numeric literals are enclosed in quotes).

The facilities provided in ANIMATOR make it much more than simply a
COBOL-oriented debugger. It can be a valuable training aid, and also
provides the ideal means for a progran:m~r to attain understanding of an
unfamiliar program.

Figure 1-1 shows how ANIMATOR fits into the COBOL syste,::.

3 - 6

Source
program

CIS COBOL
Compiler

Animator
Iii es

lnLennediate
Code

load t
ANIMATOR : int.

code

COBOL
Program
So urea
Coda .. 4---• .. ~1- ----~------

Command
Menu

Figur e 1-1 . Sys t e.m Fl owchart

Run Time System

Applica11on
files

3 - 7

-
-

GETTING STARTED WITH ANIMATOR

ISSUE DISK

Each user is provided with the program that makes up the ANIMATOR
debugging tool on an ANIMATOR Issue Disk. This program is supplied in a
file called $ANIM.V45.

FIRST STEPS

You will by now have working CIS COBOL system disks which you created
from your CIS COBOL Issue Disk. In order to use ANIMATOR with CIS COBOL
you need only copy the file $ANIM. V45 from your Issue Disk to the CIS
COBOL system disk which you are using. Do this now with your CP/M copy
software. (Remember you need to register with us as a user of AL~IMATOR
just as you did with CIS COBOL so fill in your User Registration form
~ if you have not already done so.)

To get off the ground with ANIMATOR this section uses the STOCKl
demonstration program that is described in Chapter 1 of the CIS COBOL
Operating Guide. Getting started with ANIMATOR basically involves the
same processes as were described there. You need to recompile STOCKl
for use with ANIMATOR and, of course, run it. As in the CIS COBOL
example, it is assumed that all your files are on one disk in drive A.

Compilation

The compilation command is:

A>COBOL STOCKl.CBL ANIM RESEQ<<

The compiler will output a title and information jus• as it does
normally. A resequenced listing will be produced in the file STOCKl. LST
which you will find handy to print and have next to you, al though it is
less essential for debugging with ANIMATOR than with conventional
debuggers as you will see. We inclnde it here:

3 - 8

CIS COBOL V4.S STOCK!. CBL

OPTIONS SELECTED
C-OPYLIST RESEQ ANI:i

000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. STOCK-FILE-SET-UP.
000030 AUTROR. MICRO FOCUS LTD.
000040 ENVIRONMENT DIVISION.
000050 CONFIGURATION SECTION.
000060 SOORCE-COMPUTER. MDS-800.
000070 OBJECT-COMPUTER. ~DS-800.
000080 SPECIAL-NAMES. CONSOLE IS CRT.
000090 INPUT-OUTPUT SECTION.
000100 FILE-CONTROL.
000110 SELECT STOCK-FIL! ASSIGN STOCK.IT"
000120 ORGANIZATION INDEXED
000130 ACCESS DYNAMIC
000140 RECORD KEY STOCK-CODE.
000150 DATA DIVISION.
000160 FILE SECTION.
000170 FD STOCK-FILE; RECORD 32.
000180 01 STOCK-ITEM.
000190 02 STOCK-CODE PIC X(4).
000200 02 PRODUCT-DESC PIC X(24).
000210 02 ONIT-SIZE PIC 9(4).
000220 WORKING-STORAGE SECTION.
000230 01 SCREEN-HEADINGS.
000240 02 ASK-CODF. PIC X(21) VALOE "STOCK CODE
000250 02 FILLER ?IC X(59).
000260 02 ASK-D!SC PIC X(16) VALUE "OF.SCRIPTION ,•.
000270 02 SI-OESC PIC X(25) VALUE"
000280 02 FILLER PIC X(39).
000290 02 ASK-SIZE PIC 1(21) VALUE "UNIT SIZE
000300 01 ENTER-IT REOE~IN!S SCREEN-HEADINGS.
0-00310 02 FILLER PIC X(l6) .
000320 02 CRT-STOCK-CODE PIC X(4).
000330 02 PILLER PIC X(76).
000340 02 CRT-PROD D!SC P!C 1(24).
000350 02 FILLER P!C X(56),
000360 02 CRT-UNIT-SIZE P!C 9(4).
000370 02 FILLER P!C X.
000380 ?ROCEDURE DIVISION .
000390 SRI.
000400 DISPLAY SPACE.
0004 10 OPEN I-0 STOCK-FIL E.
000420 DISPLAY SC~EEN-HEAD!NGS.
000430 NORMAL-INPUT.
()00440 !10V'E SPACE ro E~TER-IT.
000450 DISPLAY !NTER-IT.
000460 CORRECT-ERROR.
000470 ACCEPT ENTER-IT.
000 480 CF CRT-STOCK-CODE• SPACE GO TO END-IT.
000490 IF CRT-UNIT-SIZE NOT NUMERIC GO TO CORRECT-ERROR.
000500 HOVE CRT-PROD-OF.SC TO PRODUCT-OESC.
000510 ~ov~ CRT-UNIT-SI ZE TO U~IT-SIZE.
000520 HOVE CRT-STOCK-COD<: TO STOCK-COOP..
000530 >RITE STOCK-ITEM; !!VA LID CO TO CORRECT-ERROR.
000540 GO.TO NORMAL !!PUT.
•JOOSSJ ~~D-IT.
JOOS60 CLOSE STOCK-FILF..
()0057() ~ISPLAY SPACE.
000 ~3 1 OISPLA~ ''E~D or PROGRAM''.
100590 STOP RUN.

S I S COBOL lC4.S REVIS ION ,')
CO"fPrLER COPYRIGHT (C) l 978,1982 'i ICRO FOCUS ~TD

•• ERRO~s-00000 DATA•007'>8 CODE•00256 orcT,..00362:21117 / 21479

3 - 9

>".

)''.

PAGE: 0001

>''.

0118
0 118
0118
0118
0118
0118
0118
0118
0118
·)118
0184
0186
0186
0186
!)I SE
') I BE
01 SE
018£
OIBE
O l C2
OIDA
OlEO
'll EO 00
U l !O Qf)

01 FS 1;
0230 so
0240 60
0259 H
0280 AO
01 EO 00
<JI EO 00
0 1 FO 10
0 1 F4 I>
1)240 60
02 58 7~
0290 BO
'l2 9 4 S4
000 0
OOI C 00
0010
0020
0024
0038 00
0039
003F
0056 00
0057
006 E
0078
0081
·)087
,)OSF'
·109 5
OOAI
tlO.\.:. .1"'
'l0A5
YJ A9
00AC
00 !10

UR~ AA/0 000 / AA

GSA nAGS• 1FF

-

Running With ANIMATOR

Enter the normal CIS COBOL run command:

A>RUNA +A STOCKI.INT<<

The run-time system software displays its header line:

**CIS RTS V4. S COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD. URN XX/nnnn/XX

This is replaced by the ANIMATOR header lines

CIS COBOL ANIMATOR Vl.O

COPYRIGHT (C) 1981, 1982 MICRO FOCUS LTD

URN XX/nnnn/XX

This is in turn replaced by the COBOL source listing of the program on
the screen, starting at the first line of the Procedure Division with
the cursor positioned under the first verb. Available commands are
displayed on a line below this listing display.

you a "feel"
You can, of

3. Chapter 3

You are now ready to "animate" the STOCKI program. To give
for using ANIMATOR, some arbitrary instructions follow.
course, carry out any of the commands given in Chapter
describes all the commands and error lines in details.

Enter F for the Find command. The command line goes blank. Enter
"CRT-STOCK-CODE" (the delimiters are necessary) and press RETURN.
ANIMATOR will find the first reference to this data-name (line 000480) .

Enter M to Monitor this data-item. The Monitor options are displayed.
Press S for Set. A line of II symbols flashes on the screen. This
denotes an error. The cursor is positioned at the end of the data-it em.
It must be at the first character to set monitoring. Move it ther e by
use of the "character-back" key on your keyboard, and enter Mand then S
again. Nothing happens yet because the data-item is blank. As soon as
you fill it, the contents will be displayed under the command line.

Enter B to set a Breakpoint (i.e. where the program will stop whenever
it passes that point). The Breakpoint options are displayed. This time
we realize we are in error. You can only set breakpoints at statement
verbs. We therefore press the space bar to reset to the command line.
Move the cursor down to the MOVE verb on line 00500 and position it
under the M.

3 - 10

Enter Band then S to set the breakpoint here.

We now enter E for Execute and the Execute options are displayed.
Press G for Go and execute starts at the default speed (4). Enter l to
select the slowest exe c ution speed so we ca n see what is happening . The
cursor now runs through the COBOL code as it executes, bringing the
COBOL program to life or "animating" it. You can halt animation at any
ti.me by pressing the space bar and restart by pressing G again. Note
that you can enter G without the E(xecute) command.

The data entry screen is displayed and you enter values as you did when
getting started with CIS COBOL.

After accepting your data the pro g ram stops at your breakpoint as set
(line 00500). Notice that the value you entered as STOCK CODE is now
displayed under the command line because you asked to monitor its
content.

Enter G to r;o again and then select speed 9. Notice the difference in
animation speed. Enter a new record into your data entry screen and the
program stops at the breakpoint again with the new value showing in the
monitored data-item under the command line.

Enter Z (for Zoom). Note that this is another E(xecute) command that
you can enter directly. Animation stops and the program reverts t o
normal execution. If you enter a 6lank stock code it terminates.

You may now revert to the RUN +A command and repeat it, but this time
using the commands from Chapter 3 and experimenting.

Appendix E contains a c ommand summary and the CIS COBOL Pocket Guide
c ontains a DK)re concis e summary.

3 - 11

-

-

CIS COBOL FACILITIES NOT AVAILABLE WITH ANIMATOR

This section descr< .bes constraints on the use of a CIS COBOL program
with ANIMATOR.

ANSI COBOL DEBUG MODULE

The COBOL Debug module provides facilities for monitoring procedures by
means of code activated by an object time switch. Object time
activation of this code is inhibited by the use of ANIMATOR, therefore
this object tirn~ switch should not be set.

ALTER STATEMENT

ANIMATOR makes use of a paging mechanism so that the animation of large
programs is not preve.nted hy the presence of the ANIMATOR module.

This has the effect that the state of ALTERed GOTO statements cannot be
predicted wirh any certainty. Therefore care must be exercised on the
use of ANIMATOR with programs containing ALTER statements.

However, note that ANIMATOR provides facilities enabling the effect of
such control transfers to be seen, and to reset the point of program
execution if required.

COMMAND LINE PARAMETERS

CIS COBOL provides the
command line by means
executed.

facility
of the

to read parameters entered on the
first ANSI-format ACCEPT statement

This facility is inhibited when animating; such parameters must be
entered at the time the ACCEPT statement is executed.

3 - 12

CHAPTER 2

PREPARING FOR ANIMATION

COMPILATION

The steps involved in compiling a program are described in detail in the
CIS COBOL Operating Guide.

Note that if 1 t may be required to animate the program the compiler
directive ANIM must be specified.

Two other compiler directives can be particularly useful; these are
COPYLIST and RESEQ. Use of these directives will ensure that the
compilation listing matches the ANIMATOR screen display .

The use of the ANIM directive causes certain files required for
animation to be produced in addition to the normal intermediate code
file(s). These will have the extensions .DDC, .SDB and .SCP. The main
source file must have the extension .CBL.

Note that the program can be run without animation and will behave
exactly as if the ANIM directive had not been used for compilation.

RUNNING ----
The invocation of ANIMATOR to run a program is described in the CIS
COBOL Operating Guide.

The "+A" directive specifies that animation is required. The ANIMATOR
module itself must be present on the default drive. The special
ANIMATOR files (.DDC, .SDB, .SCP), along with the main source file
(which must have the extension . CBL), should be present on the same
device as the intermediate code if animation of the particular program
is required. If any of these files is missing the program is executed
normally - this al lows particular programs within a 'iierarchy to be
selected for animation.

Any library (COPY) files should also be present, on the device specified
by the COPY statement or, if none is specified, on tne same device as
the intermediate code.

3 - 13

CHAPTER 3

OPERATING COMMANDS

When a program is loaded for animation, as described in Chapter 2, the first
screenful of procedural code is displayed with the cursor positioned on the
first executable statement. Execution will not commence until initiated by
a command as described in this Chapter.

At the bottom of the screen is a delimiting line of hyphens followed by the
main command menu:-

B(rk-pnts) D(isp) E(xec) F(ind) L(evel) M(on) P(-c) Q(uery) S(creen) U(ser)

Commands are entered by simply pressing the appropriate key. If an invalid
entry is made at any time ANIMATOR indicates this by briefly replacing the
prompt line with a line of hash (//) signs and "bleeping".

Several of the main commands merely serve to invoke subordinate menus of
more detailed commands. For convenience some of the more commonly used of
these subordinate commands can also be entered directly whilst the main
prompt line is displayed (see detail.ed descriptions). After execution of a
subordinate command the main prompt line is redisplayed.

Some of the commands require that the cursor is first moved to point to thP
appropriate position in the displayed source code. The main prompt line
shown above is displayed whenever execution is suspended. Whilst this
prompt line is displayed the cursor can be moved over the screen using the
normal cursor control keys. For details of these (and how to change them)
refer to the CI~ COBOL Operating Guide .

Note that with ANIMATOR the back field and forward field function keys a.:e
used to move the cursor up and down within a screen column. In addition
RETURN will move the cursor to the start of the next line.

DETAILED COMMAND DESCRIPTIONS

The main commands fall into 4 broad categories:

Source code "window" manipulation (S,F)
Execution and animation control (B,E,L,P)
Examination and amendment of data (D,Q,M)
User screen dis 'play (U)

These commands may only be entered when the main prompt line is displayed.

3 - 14

SOURCE CODE WINDOW MANIPULATION

ANIMATOR uses the screen as a window into the source code text. These
commands allow you to reposition the source code window to any point within
the source COBOL program. Note that this in itself does not affect the
point at which execution will be resumed.

ANIMATOR automatically displays resequenced line numbers against the source
text. These will be the same as those appearing on the compilation listing
if the directives RESEQ and COPYLIST (if appropriate) were specified to the
compiler.

The S(creen) Command

Press S and the fol lowing subordinate menu is 0displayed:

SCREEN - N(ext) P(revious) T(op) E(nd) V(iew) H(alf) F(ull) =/+/-

These commands reposition the window to display a different part of the
source text.

Press the appropriate key where:

N

p

displays Next screen from source text. Note that this overlaps the
current screen by two lines.

displays Previous screen from source text.

T displays screen at Top of source text.

E

v

H

F

=n

+n

-n

displays screen at End of source text.

repositions window so that the source line indicated by the cursor is
on the third line. Note: the cursor must be positioned before
pressing S.

Splits screen in Half (ie into two windows) with a dividing line of
hyphens. The lower window is positioned to show the top of source
text. Note: Subsequent screen commands operate on the window in which
the cursor is positioned.

restores Full screen display (single window).

repositions the window such that the nth source line is aligned at the
third screen line. Note: n is equivalent to the displayed line number
omitting the trailing zero.

moves the window forward n lines.

moves the window back n lines.

Note: +, all position the cursor for entry of a numeric
quantity followed by RETURN.

3 - 15

-

There is one special case of the screen command. If there is a split screen
display and ·the cursor is positioned on the dividing line of hyphens, then
when Sis pressed the following subordinate menu is displayed:

SCREEN DIVIDER - U(p) D(own)

These commands allow the relative size of the two windows to be altered.

u moves the screen divider Up one line.

D moves the screen divider Down one line.

The F(ind) Command

This command instructs ANIMATOR to search forward from the current cursor
position through the source text for a specified string of characters. If
found the screen window is positioned with the line containing this string
as the third screen line and the cursor is positioned following the string.
If not found the main screen displa y remains unchanged, but ANIMATOR
indicates the failure by bleeping and restoring the main prompt line .

Press F and the cursor is positioned for entry of:

Either

"string" followed by RETURN

or

"string''M followed by RETURN

where:

Note:

any character not forming part of the string can be used in pl ace of "

string is any sequence of characters (including spaces); it need not be
a complete word .

the optional M instructs ANIMATOR to only search the main source file
and not any library (COPY) files.

ANIMATOR only examines columns 7 - 72 of the source text, the displayed
line numbers are ignored.

3 - 16

EXECUTION AND AND!ATION CONTROL

These? commands al low initiation and control of program execution, also
control of th e degree of animation.

The B(reakpoint) Command

Press Band the following subordinate menu is displayed:

BREAK-POINTS - S(et) U(nset) C(ancel) eX(amine)

These commands allow break-points to be set at which execution will halt
automatically. Some of these commands require the cursor to be positioned
to point to the relevant COBOL statement. The cursor must be positioned on
the first character of the COBOL verb, prior to pressing B.

Up to 4 break-points may be set concurrently.

Press the appropriate key, where:

s Sets a break-point at the statement pointed to by the cursor .

U Unsets the break-point pointed to by the cursor.

C Cancels all break-points currently set.

x eXamines break-points by repositioning the window within the source
code and positioning the cursor at the relevant statement. Successive
calls on this function will move the cursor to point to each
break-point in turn.

The E(xecute) Command

Press E and the following subordinate menu is displayed:

EXECUTE - X(single step) sK(ip) I(till next If) G(o) Z(oom) S(top run)

Tiu::se: ..:u,awands initiate execution, w1 tn or without animation, in a variety
of ways.

NOT\':

Any of these commands except for S(top run) may also be entered
directly against the main prompt line without the preceding E.

Press the appropriate key, where:

X executes a single COBOL statement and moves th e cursor to the next
statement.

3 - 17

,...,

K

I

G

z

s

skips a single COBOL statement, without executing it, and moves the
cursor to the next statement.

Note: If the final statement of a PERFORMed paragraph is skipped,
control does not exit from the PERFORM but passes to the next statement
in the source code.

Executes without animation up to the next IF statement, at which point
execution halts and the cursor is repositioned at this IF statement.

Initiates animated execution. As each statement is executed the cursor
is moved to the next statement in the source code. The speed of
animated execution can be varied by typing a digit from 1 to 9
(1 = slowest, 9 = fastest). The speed may also be entered before
initiating execution. Execution proceeds until halted as described
below.

Initiates execution without animation (Zooms). Upon reaching the first
DISPLAY UPON CRT or ACCEPT FROM CRT the user screen is displayed,
replacing the source code, and remains on the screen until execution is
halted as described below.

Stops executinn after displaying the current user screen.

After initiation by one of the above commands, execution proceeds as
described above, unless it is halted in one of the following ways:

1. If the space-bar is pressed execution is immediately halted.

2.

3.

4.

If a previously set break-point is reached execution is automatically
halted.

If execution is about to "drop through" the end of the program the
following prompt is displayed:

WARNING - Next instruction is implied STOP RUN - S(top run) C(ontinue)

Press any key to restore the prompt line and regain control. If
execution is restarted without first resetting the program counter the
program will terminate; see the P(-C) command

If a run-time error occurs the following prompt is displayed:"

RTS ERROR: nnn - S(top) C(ontinue)

Press S to stop, or C to regain control.

Error numbers are detailed in the CIS COBOL Operating Guide.

3 - 18

The L(evel) Command

Animation normally traces execution into any level of nested PERFORM. This
command allows a "threshold" level to be set at any level of nesting, such
that any PERFORM' s subordinate to this level are treated as a single
statement for animation purposes, i.e. the cursor will not be moved into
PERFORMed procedures below the threshold level.

Press Land the following subordinate menu is displayed:-

PERFORM LEVEL S(et) U(nset) E(xit)

Press the appropriate key, where:

S sets the threshold level at the current level

u

E

unsets the threshold level, restoring animation at all levels.

completes execution of the current PERFORM without animation,
repositioning the cursor to the statement following the PERFORM, and
then sets the threshold level at this point .

The P(-C) Program Counter Command

This command provides facilities to ascertain the point at which execution
will start (or resume), or to change this point. To change the restart
point it is first necessary to place the cursor at the required position.

Press P and the following subordinate menu is displayed:

PROGRAM COUNTER - W(here) R(eset)

Press the appropriate key, where:

w

R

repositions the screen window as necessary and positions the cursor at
the next statement to be executed. This is useful as a check after use
of the source screen manipulation commands, but note that it is not
necessary · since ANIMATOR will resume execution a t the correct position
unless the following command is used.

This command may also be entered against the main prompt line (without
the preceding P) .

resets the execution start point (program counter) to the current
cursor position . Before pressing P the cursor should be positioned on
the first character of an executable statement (ie a COBOL verb) .

3 - 19

-

EXAMINATION AND AMENDMENT OF DATA

These commands provide facilities for the examination and amendment of the
contents of specified data items. Selected data items are indicated by
either specifying the dataname or pointing with the cursor.

The D(isplay) Command

This command allows display/amendment of a data item referenced by typing
the name.

Press D and the cursor is positioned for entry of the required data-name
followed by RETURN.

The value of the specified data item is displayed with appropriate
conversion for usages COMP and COMP-3 (see the CIS COBOL Language Reference
Manual). For alphanumeric or group items, non-ASCII characters are
displayed as "' .

For signed numeric data items a leading sign is displayed.

Following display of the data item the cursor is positioned to the next line
for entry of a r epla cement val ue if requir ed.

If no replacement is required simply press RETURN, otherwise enter the new
value in COBOL literal format (ie alphanumeric literals must be in quotes).
Replacement is performed in accordance with the rules for the COBOL MOVE
statement.

NOTE:

Only up to 80 characters will be displayed. The attempte<l replacement
of a longer data item results in padding with spaces in accordance with
the rules for a MOVE statement (See the CIS COBOL Language Reference
Manual).

The Q(uery) Command

This command allows display/amendment of a data item referenced by pointing
with the cur~or.

Position the cursor to any occurrence of the data-name within the source
code, then:

Press Q

The data item is displayed and may be amended as described for the D(isplay)
command.

3 - 20

The M(onitor) Command

This command enables automatically repeated display of a single specified
data item (without amendment).

Press Mand the following subordinate menu is displayed.

MONITOR - S(et) U(nset) N(ame)

Press the appropriate key, where:

s

u

N

sets the monitor on the data item referenced by the cursor. The cursor
must be moved to point to any occurrence of the data-name before
pressing M.

unsets the monitor.

positions the cursor for entry of the required data-name followed by
RETURN.

The monitored item is redisplayed after each animation "step" - eg after
each statement if in "GO" mode.

USER SCREEN DISPLAY

During animation any ANSI format ACCEPT/DISPLAY statements are diverted to
the bottom of the screen so that they do not interfere with ANIMATOR' s use
of the screen.

This approach is not possible for the ACCEPT FROM CRT and DISPLAY UPON CRT
extensions for full screen interaction. Therefore all such ACCEPT/DISPLAY
screen data is buffered internally.

This "user screen" automatically replaces the source code window display
when an ACCEPT is executed, so that the user can interact with the screen in
the normal way.

Additionally the user screen can be examined by means of the U(ser) command.

The U(ser) Command

Press U and the user screen is displayed, replacing the source code window
display. If the Z key is pressed at this point, execution without animation
(Zoom) is initiated, and the user screen remains on display. Otherwise, if
any other key is pressed, the display reverts to the source code.

3 - 21

-

-

B -
D

E

APPENDIX A

ANIMATION OPTION COMMAND SUMMARY

This Appendix is a summary in alphabetical order (rather than logical
order) of the commands that the user can select from the CRT menu that
is displayed when the Animation Option is invoked in the Run command. A
brief summary of each command is given. A summary is also contained in
the CIS COBOL Pocket Guide.

The Breakpoint command allows breakpoints to be set by the user at
which execution will halt automatically.

The Breakpoint command offers a menu of four options:

s Set breakpoint at statement currently pointed to by the cursor.

U Unset the breakpoint currently pointed to by the cursor.

C Cancel all breakpoints.

x Examine next breakpoint. Can be used successively to examine
all set breakpoints.

The Display command enables display and/or amendment of the named
data-item.

The Execute command is used to specify the way in which the user
requires execution of the program. On entry, the command displays an
option menu as follows:

X EXecutes a single COBOL statement and moves the cursor to the
next statement.

K SKips a single COBOL statement without execution and moves the
cursor to the next statement.

I

G

Executes (without Animation) to the next If statement, halts and
positions the cursor at this statement.

Initiates execution (GO) with Animation. As each statement is
executed (at a specified speed) the cursor is moved to the next
statement in the source code. Speed of execution can be set
before entering G or altered after entering G by entry of a
numeric character l thru 9, where l is slowest and 9 is fastest.

Z Initiates execution without Animation activated (Zooms)

3 - 22

F

L

M

p

Q

s

s Stops execution after displaying the current user screen.

The Find command searches from the current cursor position through the
source text for a specified string of characters.

The Level command allows a "threshold" level to be set at any level of
nested PERFORM such that any PERFORM statements at this level are
treated as a single statement for Animation purposes, i.e . , the cursor
will not be moved into PERFORMed procedures below threshold level.

S Sets the threshold at the current level.

u

E

Unsets the threshold level and restores Animation at all levels.

Completes the current PERFORM without further Animation, then
sets the threshold at the level of the statement immediately
suceeding the current PERFORM statement.

The Monitor command enables automatic repeated display of a single
specified data-item (without amendment) during program execution.

s

u

N

Sets the Monitor on the data-item at the current cursor
position.

Unsets the Monitor.

Positions the cursor for operator entry of the Name of the
data-item to be Monitored.

The program-counter command provides facilities to ascertain the point
at which execution will start (or resume), or to alter this point. On
entry, the P command displays an option menu as follows:

W Where - repositions the cursor at th e next statement to be
executed.

R Resets the execution start point to the current cursor position.

The Query command allows display and/or amendment of the data-item
pointed at by the cursor when Q is entered.

The Screen command repositions the screen window to display a
different part of the sour ce text as follows :

N displays Next screen from sourc e text.

p Displays Previous screen from source text.

3 - 23

-

T

E

v

H

Displays screen at Top of source text.

Displays scre:m at End of source text.

Repositions window so that the source line indicated by the
cursor is on the third line. Note: the cursor must be
positioned before pressing S.

Splits the screen in half (i.e. into two windows) with a
dividing line of hyphens. The lower window is positioned to
show the top of source text. Note: Subsequent screen commands
operate in the window in which the cursor is positioned.

F Restores Full sc reen display (single window).

=n - repositions the window such that the nth source line is aligned
at the third screen line.

+n - Moves the wind0w forward n lines.

-n - Moves the window back n lines.

Note : +, - al 1 position the cursor for entry of a numeric
quantity follow ed by RETURN.

There is one special case of the screen command. If there is a
split screen display and the cursor is positioned on the dividing
line of hyphens, then when Sis pressed the following subordinate
menu is displayed:

SCREEN DIVIDER - U(p) D(own)

These commands allow the relative size of the two windows to be
altered.

U moves the screen divider Up one line.

D moves the screen divider Down one ljne.

Thi, User commanri d1.sp1ays the current user screen replacing the source
code window display until any key is pressed.

3 - 24

piiii\.
_ -

CIS COBOL

FORMS-2 UTILITY

MANUAL

Version 1.3

Issue 9
November 1983

Thi s manual describes your
interactive screen layouts
programs .

WELCOME TO FORMS-2!

FORMS- 2 package t o design, create and ed i t
for use in CIS or L/11 COBOL application

As the product is compatible with both the Micro Focus base COBOL products
CIS COBOL and LEVEL II COBOL, the common abbreviation "CIS or L/II COBOL" is
used throughout this manual.

Most application programs will be written separately according to in di v idual
requirements but FORMS-2 can automatically generate a powerful user-oriented
indexed data ent r y and filing system maintain ed by use of the sc reen layout s
(forms).

If you want to generate an automatic indexed filing system Index pr ogra m and
then use it, carry out Chapter 1 procedures, read Chapters 2 and 3 brie f l y
and then refer straight to Chapter 8 before performing the comprehensi ve
sample run in Chapter 9 .

If you wish to generate some screen la yout s , carry out the procedures in
Chapter 1, re ad br i efly Chapter s 2 and 3, and then perf orm th e comprehensiv e
sample run in Chapter 7.

To gain a further understanding of the FORMS-2 features and FORMS-2
operation read Chapters 1, 2 and 3 in detail. Chapters 4, 5, 6 and 8 are
descriptions of FORMS-2 output file contents and relate directl y to opti onal
features . that can be used. Read these Chapter s only if you require the
feature described.

It is r ec ommended th a t, in any cas e , you run the sampl e progr ams before
using FORMS-2 to gener a te your own f or ms or indexed fi l es .

© COPYRIGHT 1980, 1983 by Micro Focus Ltd.

4 - 2

NOTATION IN THIS MANUAL

Throughout this manual the following notation is used to describe the format
of data input or output:

l.

2.

3.

4.

All words printed in small letters are generic terms representing names
which will be devised by the programmer .

The carriage return (CR) or equivalent data input terminator key is
referred to throughout this manual as the RETURN key.

The symbol « in this manual indicates that the RETURN key must be
pressed once.

The space bar or key is referred to throughout this manual as the
SPACE key.

Headings are presented in this manual in the following order of importance:

CHAPTER n }
TITLE

ORDER ONE HEADING
ORDER TWO HEADING
Order Three Heading
Order Four Heading

Order Five Heading:

Chapter heading

Text two lines down

Text on same line

Numbers one (1) to nine (9) are written in text as letters e.g., one.
Numbers ten (10) upwards are written in text as numbers e.g. , 12.

RELATED PUBLICATIONS

For details of CIS or L/II COBOL operation and language respectively, refer to the
documents:

CIS or LEVEL II COBOL Operating Guide
CIS or LEVEL II COBOL Language Reference Manual

4 - 3

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION

GENERAL DESCRIPTION

FACILITIES
OUTPUTS
PHASES

Initialisation Phase
Work Phase

OPERATOR INTERFACE

CURSOR MOVEMENT FACILITIES .

GETTING STARTED

FORMS-2 VALIDATION

CHAPTER 2
INITIALISATION PHASE

INITIALISATION SCREEN 101

DATA-NAME AND FILE-NAME BASE
LINES PER CRT SCREEN
CURRENCY SIGN
DECIMAL-POINT

INITIALISATION SCREEN 102

FILE COMBINATIONS
DEVICE/DIRECTORY PREFIX

SCREEN WOl

SCREEN TYPE SELECTION
TERMINATING THE RUN

CHAPTER 3
WORK PHASE

4 - 4

4-8

4-8
4-8
4-9

4-9
4-9

4-10

4-10

4-11

4-12

4-19

4-19
4-20
4-20
4-20

4-21

4-21
4-22

4-23

4-23
4-24

WORK SCREEN

BACKGROUND/FOREGROUND
EDIT MODE

Fixed Text
Variable Data

COMMAND MODE

Commands

General Work Screen Commands
Work Screen Manipulation Commands
Programming Commands

WORK PHASE COMPLETION

CHAPTER 4
DATA DESCRIPTIONS

RECORD-NAME AND DATA-NAME GENERATION

RECORD NAMING
DATA NAMING

PICTURE GENERATION

FIXED TEXT
VARIABLE DATA FIELDS

EDITING THE DDS FILE
INCORPORATION OF DDS FTLF. CONTENTS

CHAPTER 5
THE CHECK-OUT PROGRAM

CHECK-OUT PROGRAM GENERATION
CHECK-OUT PROGRAM COMPILATION
CHECK-OUT PROGRAM RUNNING

LOADING
CHECK-OUT PROCESSING

Fixed Text Screens
Variable Data Screens

CHECK-OUT COMPLETION

4 - 5

4-25

4-25
4-26

4-26
4-26

4-27

4-27

4-28
4-30
4-32

4-37

4-38

4-38
4-39

4-39

4-39
4-40

4-40
4-40

4-42
4-42
4-43

4-43
4-43

4-43
4-43

4-44

_,

CHAPTER 6
SCREEN IMAGE FILE

SCREEN IMAGE FILE GENERATION
FORMS-2 MAINTENANCE
PRINTED FORMS
FORM IMAGES IN THE DESIGN PROCESS

CHAPTER 7
FORMS-2 USER SCREEN
GENERATION EXAMPLE

CHAPTER 8
INDEX PROGRAM

INDEX PROGRAM GENERATION
FILES GENERATED
INDEX PROGRAM COMPILATION
INDEX PROGRAM RUNNING

LOADING
DATA PROCESSING FACILITIES

Enquiry by Key Field
Sequential Enquiry
Amend Displayed Record
Delete Displayed Record
Insert New Record
Terminate Run

USE ON MULTI-USER SYSTEMS

Enquiry
Amend Display Record
Insert New Record

USER REQUIREMENT INTERPRETATION SUMMARY

Key and Data Fields Unchanged
Key Changed and Data Unchanged
Key Unchanged and Data Changed
Key and Data Changed

CHAPTER 9

USER INDEX PROGRAM EXAMPLE

4 - 6

4-45
4-46
4-46
4-46

4-48

4-57
4-58
4-59
4-59

4-59
4-60

4-60
4-60
4-60
4-60
4-61
4-61

4- 62

4-62
4-62
4-62

4-64

4-64
4-64
4-64
4-65

4-66

1-1
1-2

APPENDIX A

INITIALISATION SCREENS

APPENDIX B

WORK SCREENS

APPENDIX C

HELP SCREENS

APPENDIX D

OPERATING FORMS-2 WITH CP/M

Cursor Control Keys
FORMS-2 Issue Disk Contents

4 - 7

4-10
4-11

CHAPTER 1

INTRODUCTION

GENERAL DESCRIPTION

FACILITIES

The FORMS-2 package is an extensi on to the CIS or L/II COBOL software
development systems which enable interactive creation and editi ng of data
entry screens for applications programs at a CRT. The package prov ides four
powerful facilities to aid the design and development of interactive
applications written in CIS or L/II COBOL:

*

*

*

*

OUTPUTS

Translation of user screen la yout s in to COBOL record description s
for inclusion in COBOL applications programs.

Verification of user screen la youts in a Check-Out program before
their incorporation in an application program.

Retention of exact screen images of the user screens in disk files
for subsequent editing and printing.

Gener a tion of an entire COBOL pro gram to allow data capture,
upd a t e and interrogation by means of application screens and an
indexed sequential file.

The user can choose any valid combination of the above facilities and
dependent on the options selected FORMS-2 wi ll automatically produce the
fol l owing fo ur t ypes of disk output fi le : -

*

*

*

*

A source file of CI S or L/II COBOL Data Description Statements
defining the user designed screens (forms). These statements can
subsequently be included in a CIS or L/II COBOL application
program using the COPY verb. The file is generated as
filename.DDS .

A source file of a Check-Out program inc orpor a tin g the Dat a
Description Stat ements de fi ning the user's screens . After
compilation the user is able to verify th e da t a entry fo rm prior
to building the ac tu al application. The file is generated as
filename.CHK.

Screen Image files of exact copies of the user defined forms. The
files are generated as filename.Snn (nn is 00 to 99).

A file of the source of an Index program based on the user screen.
After compilation the generated program can be used for the
storage, retrie va l, updating and deleti on of data entered via the
users form . The file is generated as filename.GEN. ·

4 - 8

PHASES

FORMS-2 processing is divided between a number of logically distinct units
but two main phases can be identified - Initialisation Phase and Work Phase:

Initialisation Phase

The Initialisation phase is passed through once only and establishes the
characteristics of this particular run of the program. It is a series of
screens containing self-explanatory prompts to which the user replies as
necessary.

Work Phase

At least two Work Phases are passed through for each data entry screen
required by the application.

The FORMS-2 screen is analogous to a paper form in which the printed fixed
text is used as a guide to entering the variable data in the spaces
provided. To the human eye it is obvious where the variable data entr y
areas occur on a form but the computer needs to have these areas defined
explicitly. There are, therefore, two types of Work Phase: one in which
fixed text is specified and one in which variable data fields are specified.

4 - 9

flllll1

OPERATOR INTERFACE

FORMS-2 is written in COBOL and uses the ACCEPT and DISPLAY extended CIS and
L/II COBOL features . These two verbs are described in the CIS or L/II COBOL
Language Reference Manuals, as are the cursor control features.

Advantages of this CRT interface are:

*
*
*

Corrections can be directly overtyped
Numeric fields accept only numeric characters
The full stop or period (.) when keyed in a numeric field
automatically zero-fills the field from the left.

CURSOR MOVEMENT FACILTIES

The user has the ability to move the cursor quickly and easily about the
screen using the standard CIS and L/II COBOL ACCEPT statement interactive
facilities.

The general functions of the cursor control keys are summarised in the
following table. The actual key may vary from that shown dependent on the
particular CRT being used.

Table 1-1. Cursor Control Keys.

KEY: FUNCTION:

- Position cursor right one data character

- Position cursor left one data character

l Position cursor at start of succeeding data field

t Position cursor at start of preceding data field

ctrl T Move cursor to start of first data field, referred to as HOM
or ' throughout this manual.

TAB Position to next tab stop

In Edit Mode the screen is split into fields 80 characters long. There are
22-24 fields per screen depending on the number of lines specified at Screen
IOl.

Corrections to text may be made by overtyping or by switching into Command
Mode and using the edit i ng commands.

4 - 10

GETTING STARTED

The FORMS-2 Issue Disk is a formatted data disk formatted to the
requirements of CP/M.

Load the Operating System system disk and the FORMS-2 Issue Disk, bootstrap
load the Operating System as usual, and obtain a directory of the FORMS-2
Issue Disk. All the files listed in Table 1-2 should be present on the
disk. If they are not, or any problems arise, contact your Distributor.

Table 1-2. FORMS-2 Issue Disk Contents

FILE CONTENTS DESCRIPTION

FORMS2.COM FORMS2 program The manual
FORMS2. 151
FORMS2.I52
FORMS2.I53
FORMS2. 101 Initialisation Phase Screens Chapter 2
FORMS2. 102

FORMS2.W01
FORMS2.W02 Work Phase Screens Chapter 3

FORMS2.H01
FORMS2.H02 Help Screens

Chapter 3
FORMS2.H03 (? Command)
FORMS2. H04

FORMS2.CH1 Check-Out Program Skeleton Chapter 5
FORMS2.CH2

FORMS2.GN1 Index Program Skeleton Chapter 8
FORMS2.GN2

Having validated that all the files are present copy all of them to a
working disk using the standard copy program provided, and store the Issue
Disk as a back-up master .

4 - 11

-

FORMS-2 VALIDATION

Before using your copy of FORMS-2, you should first validate the main files
on your disk by performing the simple run below:

1. Boot the system up, and load FORMS-2 by entering the command:

FORMS2«

2. The program will run, and will come up with the first screen, thus:

Press RETURN when complete.

A six-character base for file-names and data-names is requested followed by
three other questions. You need only key DEMO followed by the RETURN key to
accept the defaults displayed.

4 - 12

s.

6.

7.

FORMS-2 displays a blank screen. You are currently in Edit Mode,
should be able to position the cursor at any point on the screen.
the cursor control keys and the normal character keys to set up
following text on the screen:

NAME

Finally press the RETURN key.

and
Use
the

FORMS-2 puts" "in the top left of the screen indicating that you are
now in Command~ode. Enter? and then press the RETURN key,

FORMS-2 displays screen HOl, thus:

Enter then RETURN.

4 - 14

rn,

·-- =

10. FORMS-2 displays screen H04, thus:

Simply press RETURN.

11. FORMS-2 redi splay s th e fixed text that you keye d in at step 5 . Pres s
RETURN.

12. FORMS-2 puts
RETURN.

" in the top left of the screen. Enter F then press

13. FORMS-2 displays screen W02, thus:

Enter A the n RETURN.

4 - 16

14. Again FORMS-2 redisplays the fixed text entered at step 5. Press
RETURN.

15. FORMS-2 puts 11 11 in the top left hand of the screen. Press the SPACE
and then RETURN~keys.

16. FORMS-2 displays screen WOl again to request the Screen Type option.
Note the default is 11C11 and press RETURN.

17. FORMS-2 displays the fixed text screen. Use the cursor control keys and
key in X's alone to set up the screen as followsf

NAME [XXXXXXXXXXXXXXXXXXXX)

Press RETURN.

18. FORMS-2 puts 11 11 in the top left of the screen. Press the SPACE key
and then RETURN-:-

19. FORMS-2 displays screen WOl again. This time enter
to complete the run.

4 - 17

and press RETURN

-

1-'r
I .- - ,

20. FORMS-2 terminates with the message:

END OF FORMS2 RUN

FORMS2 COPYRIGHT (C) 1979, 1982 MICRO FOCUS LTD

You have now used all the FORMS-2 Screens and you can be sure that you have a
usable product.

4 - 18

CHAPTER 2

INITIALISATION PHASE

The Initialisation Phase of the FORMS-2 Utility program immediately follows
program load, and is only carried out once in any one run of FORMS-2. It
consists of replying to questions asked on the two Initialisation screens
101 and 102.

INITIALISATION SCREEN 101

This screen is displayed immediately FORMS-2 is loaded.

Four items of information are requested. Note that the effect of pressing
the RETURN key during this screen display immediately enters all responses
so far made and any remaining defaults. Do not therefore press RETURN until
all the required entries have been made, for the following:

*
*
*
*

Data-name and the File-name Base
Lines per CRT Screen
Currency Sign
Decimal-Point Represent a tion

DATA-NAME AND FILE-NAME BASE

The record/filename base keyed in at this point is used in the following
ways by FORMS-2:-

l.

2.

It is taken as the first part of all the data-names and record-names
generated in this run. Uniqueness is achieved by addin g a two-digit
sequence number for new r e cords and adding ·the sequent ia l number of the
field within the form for datanames within re cords. Optionally by
means of a Work Phase command, uni queness may be achi eve d by adding the
screen coordinates.

It is taken , as the main filename for files generated.
consist of:-

These can

filename .DDS

filename .CHK

filename .Snn

filename .GEN

for COBOL Data .Description Statements (See Chapt e r
4)

for Checkout program (See Chapter 5)

for Screen images
(nn=00, 01, 02, ••• ,99) (See Chapter 6)

for Index program (See Chapter 8)

Note that only one DDS file is output per FORMS-2 run, whereas a separate
screen image file is output for each screen built.

4 - 19

LINES PER CRT SCREEN

FORMS-2 can be used with screens of 22, 23 or 24 lines, FORMS-2 defaults to
24 for this entry.

CURRENCY SIGN

This entry allows the default currency sign ($) to be overridden. It will
cause generation of an appropriate Special-Names entry in eith e r the
Checkout and Index program. The specified currenc y sign should be used when
specifying numeric edited fields in the Work Phase, and will be used in the
generated data description statements.

NOTE:

The specified character is not validated. Users should refer to the
CIS COBOL or L/II COBOL Language Reference Manuals for a list of valid
characters.

DECIMAL-POINT

This option a ll ows the roles of the pe rio d or full-stop sign (.) and th e
comma sign (,) to be excha nged. If "," is spe cifie d then a DECIMAL-POINT I S
COMMA clause will be generated in the Checkout or Index Programs. The
default is ".". The specified decimal point sign should be used when
specifying numeric edited fields in the Work Phase, and will be used in the
generated data description statements.

4 - 20

INITIALISATION SCREEN 102

Screen 102 is displayed immediately after screen 101 entries are terminated
by pressing the RETURN key.

At this point the user specifies the following:

*
*

Types of files to be created
Device/Directory to which files are to be written.

Once screen 102 is released by pressing RETURN the Work Phase is entered and
it is no longer possible to amend information specified during the
Initialisation Phase.

FILE COMBINATIONS

FORMS-2 offers options for all valid combinations of t hese f iles, each
identified by a unique file name exten s ion as follows:

1.

2.

3.

DDS - The user may generate COBOL source Data Descripti on Statements
(DDS) corresponding to the scree ns he has created. These are output to
a standard ASCII text file and may be subsequentl y compiled into an y
pr ogr am us ing the s t an da rd COBOL COPY f ac ilit y . In pa r t i cular the y are
use d by t he Check-Out and Index pr ograms , (se e belo w) .

The reader who is unfamiliar with s creen handling in a CIS or L/II
COBOL program should consult the app r opriate Languag e Refe re nc e Manual
(especiall y the sections on ACCEPT/ DISPLAY, FILLER, REDEFI NES) .

CHK - In addition to generatin g DDS, FORMS-2 ca n a lso gen er a te a
Checkout pr ogram . This consists of simply th e Pr ocedure Divisi on
s tat ement s (ACCEPT and DISPLAY) whi ch co rr es pond to th e sc r ee ns t hat
have bee n c re a t ed. Thes e s t ate ments a r e conta i ned i n f il en ame.CHK (see
reco rd/ fi l ename pr efix) and th ey a r e combined wit h th e fol l owing COPY
f il e s:-

filename.DDS, FORMS2.CH1, FORMS2 . CH2

The Checkout program allows the user to demonstrate on th e screen
exactly how the system will oper a te , by displ aying successively the
s creen s he has j ust cre at ed , and by. a l lo win g da t a t o be enter ed j ust as
i t woul d be und e r ac tu al ope r a t i ng con ditio ns.

Snn - The use r may a l so ou tpu t t he text of t he sc r een j us t des i gned t o
a f i le on dis k in th e fo rm of a sc r ee n i mage . This file can be
retrieved later in this run or in subsequent FORMS-2 runs , f or further
amendment if required.

Alternativel y' the y may be printed , and the hard co py simpl y used as n
mea ns of communica t ing bet ween di ffe r ent indi vidu als at di f fer ent t imes
(e. g. t he end user and th e prog r ammer) .

4 - 21

4.

NOTE:

GEN - FORMS-2 can generate an Index program. This includes all code
necessary to set up and maintain an indexed sequential file with
records corresponding to the structure of the user's form. The code is
output to filename.GEN and is combined with the following copy files:-

filename.DDS, FORMS2.GN1, FORMS2.GN2

Index program generation places constraints upon the user during the
FORMS-2 run. The creation and operation of the Index program is
discussed in detail in Chapter 8.

If the Q command (see Chapter 3) is entered at this point, FORMS-2 will
"quit" back to screen 101, allowing amendment of information given
there . This can be useful if RETURN is inadvertently pressed before
all options have been entered.

DEVICE/DIRECTORY PREFIX

All the files output by FORMS-2 are on the same device/directory. Specify
the mnemonic device/directory prefix as required by your operating system.
If this reply field i~ left blank, the files will be created on the default
device/directory.

4 - 22

-
-i

CHAPTER 3

WORK PHASE

The user defines the screen layouts (forms) to be used in a CIS or L/II
COBOL application by entering text at the keyboard to produce model forms on
the screen. The user may define as many forms as he wishes in a single
FORMS-2 run. To define one form requires at least two distinct Work Phases:
one to define the fixed text of the form, and another to define the variable
data entry fields.

Most commonly the f i rst Work Phase is used to specify the fixed text form
and the subsequent Work Phase to specify the variable data fields within the
form. However this need not always be the case and FORMS-2 needs to know
which t ype of text is to be input i n a particular phase. Therefore the Work
Phase is introduced by a screen presenting the vario us options (WOl).

SCREEN WOl

SCREEN TYPE SELECTION

Fixed Text selections offered at this screen are as follows:

A

B

The CRT scree n is cleared to spaces in preparation for the user to
ente r the fixed text for a new form .

The previous screen is redisplayed to assist the user in defining
additional fixed text. Text from the previous screen is used only
as a background in this case, and is not included in the record
defini tion for the fixed text currentl~ing keyed in. The user
must therefore ensure that if any part of the previous screen is
inad vert en tl y overkeyed, the original characte rs must not be
replaced but clea r ed to spaces.

Variable Data selectio ns offered at this screen are as follows:

c

D

The previous screen is redispla yed to assist the user in the
redefin i tion of the form to incorporate variable data field
specifi cations. In the application the data is keyed into the
fixed text form itself.

The previous screen is redispla ye d to assist the user in the
definition of variable data fields which will be kept separate
f rom the fixed t ex t within the applicatio ns program. This may
sometim es be of assistance t o the programm e r even tho ugh it
re sult s in larger application programs.

4 - 23

TERMINATING THE RUN

Screen WOl is redisplayed after completion of each Work Phase, and is t he
screen used to terminate the program, This is done by entering the
character ! and pressing the RETURN key.

WARNING!

Use of the
the run,

command at any other time causes immediate abandon ment of

On termination, the DDS file is closed and an identification message is
displayed. If the Check-out facility was specified during initialisation
then output of the Check-out program to di sk is completed and the CHK file
is closed with an identification message displayed.

Termination occurs automatically after the second Work Phase if an Index
program is being generated (see Chapter 8).

4 - 24

- i

WORK SCREEN

After the screen type has been selected, the user is presented with the
appropriate Work Screen for that text to be entered, i.e. , if option A
(fixed text on clear screen) is selected, a blank screen is displayed . For
the other options, the previous screen is redisplayed to allow correct
alignment of the current input.

BACKGROUND/FOREGROUND

In order to process only the data entered in this phase, FORMS-2 must keep
this data separate from previously entered data which is displayed purely
for alignment purposes. FORMS-2 does this by constructing the displayed
Work Screen from two separate data areas, termed Background and Foreground.
The Foreground holds the data entered during the current Work Phase. The
Background holds previously entered data which has been retained for
alignment of the data entered in the current Work Phase. At the end of each
Work Phase FORMS-2 processes the Foreground data only.

When screen WOl is next reached, if options B, C or D are chosen, the
Foreground is overlayed on the current Background contents and then
Foreground is cleared to spaces. If option A is selected both Background
and Foreground are cleared to spaces.

In this way the new Work Screen is prepared automatically.

NOTE:
It is possible to override this automatic Work Screen preparation for
the next phase by means of a Work Screen command, described later, and
leave both areas unchanged.

Generally data is entered into the Foreground via the keyboard, and is moved
into the Background only from the Foreground. The F Work Screen command
described later provide facilities for further manipulation of these areas.
In particular it is possible to input a Screen Image file from a previous
run into the Foreground, thus enabling amendment of existing forms.

During entry of data into the Work Screen (i.e. Foreground) two modes can be
invoked as follows:

* Edit Mode

* Command Mode

The mode in which the user keys data to create
the model form. The initial mode is always
Edit Mode.

Commands are available to assist in the
creation of the edited Work Screen and in its
processing.

4 - 25

EDIT MODE

Edit Mode is identified to the user as the mode in which the cursor can be
freely moved to any part of the screen by use of the cursor control keys.
Entries may also be made into any part of the screen, in accordance with the
screen type selected at the start of this Work Phase.

Fixed Text

In the design of the Fixed Text of a form (i.e. the fixed fields analogous
to the pre-printed text on a paper form) any legible characters can be
entered anywhere on the screen. This text will be displayed as "prompt"
text during a data entry run of the application.

Variable Data

In the design of the Variable Data fields of a form (i.e. the fields
analogous to the entry spaces on a pre-printed form) the characters X, Y and
8, 9 can be entered.

When variable data is being keyed in, X denotes an alphanumeric character
and 9 denotes a numeric character. If it is required to have two
alphanumeric fields contiguous with each other, Y's are placed in the
character positions of the second field. Similarly, for contiguous numeric
fields B's are used.

EXAMPLE:
INVOICE NO

Suppose in an application the operator must key in an Invoice Number. Then
the fixed text in this example could be "INVOICE NO •..... " One example
value of an invoice number could be "CA3021". It is necessary to define the
area and type of this variable data explicitly for the computer. Hence if
the invoice number always had two alphanumerics followed by four numerics,
the user of FORMS-2 would key in XX9999 at the point on the screen (the dots
in this example) where he wishes the operator to key the actual invoice
number when the application itself is running. (Note that CIS and L/II
COBOL provide an automatic validation of numeric fields).

Additionally, special editing characters can be input to specify numeric
edited fields. Note that these fields should be separated by spaces.
Numeric Edited Fields are described in the CIS or L/II COBOL Language
Reference Manual. The valid characters are:-

Z, *, +,-,CR, DB, .(period), ,(comma), B, /, O(zero), $

The $ sign is the currency sign which may be replaced by another sign as
specified in the SPECIAL-NAMES clause of the COBOL program either directly
or as specified during the Initialisation Phase of the FORMS-2 run (See
Chapter 2).

NOTE: The picture characters S, V, Pare not allowed.

4 - 26

-· -

-'\._

-
~ -

f" ..

COMMAND MODE

To switch to Command Mode from Edit Mode, the user simply presses the RETURN
key.

Command Mode is identified to the user as the mode in which two underline
characters initially bound the cursor, and the cursor is constrained to stay
within these two characters.

Commands are invoked by keying the command always followed by pressing the
RETURN key.

When execution of a command is complete, all commands (except SPACE,
Q) return to Edit Mode.

and

The default command is the underline character(_) and this causes immediate
re-entry to Edit Mode.

Commands

The commands available to the user during the Work Phase fall into three
main groups. All commands are entered by typing the command character/s
followed by pressing the RETURN key.

1.

2.

3.

NOTE:

General Commands

General commands perform such functions as releasing the Work Screen
for processing.

Work Screen Manipulation Commands

Work Screen Manipulation commands assist in the preparation and editing
of the Work Screen. It is recommended that all users become very
familiar with these commands.

Programming Commands

Programming commands have been introduced mainly for the convenience of
the COBOL programmer, and some of them will not be meaningful without
an understanding of COBOL. They include commands to assist in
producing efficient code, and to give more control over the files
output.

Groups and 2 are summarised within HELP screens 1 and 2
Group 3 is summarised on HELP screens 3 and 4 (H03,
Appendix C.

4 - 27

(HOl, H02).
H04). See

Work Screen Manipulation Commands

The commands F and Oare preparation commands.

F Invoke Foreground/Background Menu Screen (W02).

Screen W02
Foreground
Foreground
Chapter.

contains options to assist in setting up the
component of the Work Screen. The concept of
and Background is described earlier in this

The options made available by the FORMS-2 W02 Screen
are:-

A

B

c

D

E

F

G

H

I

J

Note:

Return to Edit Mode.

Clear Foreground to spaces.

Clear Background to spaces.

Overlay Background data on to Foreground.

Overlay Foreground data on to Background

Overlay a Screen Image file onto
Foreground. This option allows forms
defined in previous runs (and also
earlier in this run) to be amended. If
selected the user is prompted for the
identity of the required file.

Overlay a Screen
Background.

Image file onto

Show Foreground. This displays just the
Foreground component of the Work Screen
for examination. The full Work Screen
will be restored on return to Edit Mode.

Show Background. This displays just the
Background component of the Work Screen
for examination.

Show a Screen Image file. The user is
prompted for the identity and the
specified file is displayed, but without
corrupting the current contents of either
Foreground or Background. This enables a
check to be made prior to using option D.

The options H, I and J cause a display which
remains until RETURN is pressed.

4 - 30

r

fW1
'·

Fx

01

O or 00

Specifies Required Foreground/Background Option.

xis the option code as contained in screen WP02 above. The
specified option is executed and control returned to Edit
Mode without display of the WP02 screen.

"Switch Off" Automatic Background/Foreground Preparation.

The Background/Foreground preparation sequence is described
under BACKGROUND/FOREGROUND earlier in this Chapter. This
command is used to prevent the current Foreground being
merged into the Background or either area being cleared for
the next phase.

The 01 command remains effective until the command O
(described below) is entered.

Reset Background/Foreground Preparation.

The Background/Foreground preparation sequence is reset to
automatic (starting at the beginning of the next Work Phase).

Note:

The Q command has a similar effect (beginning at the
next phase).

The commands C, D, I, Kand A are editing commands and are controlled by the
position of the cursor at the time Command Mode is entered (i.e. the current
cursor position) and operate only on the Foreground data. Background data
remains in the same position.

Cn

Dn

In

Kn

Insert Spaces

Inserts n (1-9) spaces prior to the character at the current
cursor position. Only the current line is affected.

Delete Characters

Deletes n (1-9) characters including the character at the
current cursor position. Only the current line is affected.

Insert Blank Lines

Inserts n (1-9) lines prior to the line containing the
current cursor position, irrespective of the column. Only
whole lines can be inserted.

Delete (Kill) Lines

Deletes n (l-9) lines including the line containing the
current cursor position. Only whole lines can be deleted
using this command.

4 - 31

An Repeat Current Line

Repeats the line containing the current cursor position n
(1-9) times.

Note:
This does not act as an insert. Any Foreground
data in the next n lines will be overwritten.

Commands U and V are cursor positioning commands.

Horizontal cursor positioning can be achieved by means of the -and
keys.

Vertical cursor positioning is partially achieved by means of the l and t
keys, but the cursor is usually placed at column 1.

Vertical tabulation within the same column can be required when setting up a
form. Two "tabulation" commands are provided.

Un

Vn

Move Cursor Up

Moves the cursor up n (1-9) lines from the current cursor
position. Cursor position within the line is maintained.

Move Cursor Down

Moves the cursor down n (1-9) lines from the current cursor
p05ition. Cursor position within the line is maintained.

Programming Commands

G The Dataname Structuring Command

This command is not available if option G (for Index Program) is
specified at screen 102.

The default recordname format generated by FORMS-2 for inclusion
in the user's COBOL source program for screen formatting is as
follows:

where:

bbbbbb-rr (01 level)

bbbbbb is the 1-6 character base specified at screen 101

rr is the record number, starting at 00 in the first
Work Phase and increasing by one for each subsequent
Work Phase.

4 - 32

fiiillif
I

NOTE:
If the window commands are used
starting in other than line l
recordname generated will be:

bbbbbb-rr-11

where 11 is the line number.

to define a window
then the default

The default elementary dataname structure generated by FORMS-2 for
inclusion in the COBOL source program for screen formatting is
as follows:

bbbbbb-rr-nnnn

where: nnnn is the sequence of this field within the screen,
starting at 0001.

Alternatively:

The G (or GO) command causes nnnn within the dataname to be the
screen coordinates of the start of the field. This can sometimes
be of use to the programmer as a reference guide when using
COBOL facilities to set cursor position.

The Gl command restores the default dataname generation to using
sequential field numbers.

The commands J and Mare Multiple Spaces and FILLER Commands

The COBOL interactive ACCEPT and DISPLAY verbs operate only on named
fields; FILLER areas are left alone. The time taken to display a screen
depends both on the size and also the number of constituent fields.

When processing fixed text screens, FORMS-2 by default generates FILLER
wherever multiple spaces appear. On some forms this can result in many
small fields separated by small FILLER fields. The problem may be
alleviated by :

Jn Reset Multiple Spaces

The Jn command resets the number of contiguous spaces FORMS-2 will
allow within the VALUE clause of a named field. This is initially
set to 1.

n may be O - 9

NOTE:

J or JO will force FILLER's even for single spaces.

4 - 33

An alternative method of forcing spaces within named fields is by use of the
underline which is designated for this purpose. Use of the underline
character in a field results in an actual space in the corresponding
position in the generated VALUE clause .

If it is required to change the designated character from underline to
something else (presumably because there is a requirement to generate VALUE
"_"), the command Mis used as follows:

Mx

Sn

Change Default "space"

The Mx command changes the default character (underline) to
that specified by x.

NOTE:
If the space character () itself is specified this will
force generation of named fields for the entire screen
without any FILLER's.

File Output Control Command

This command is not available if Option G (for Index Program)
is specified at screen 102.

S (or SO) cancels any other Sn commands in effect at the
time.

Sl

S2

S3

suppresses DDS (& CHK) text generation for this Work
Screen. Generation of this text resumes for the next
Work Screen unless the same command is repeated in the
next phase.

suppresses Screen Image (Snn) text generation for this
Work Screen. Commonly used . to suppress Screen Images of
just variable data fields. Again the effect only lasts
for the current phase.

results in the user being given the opportunity to
override the default Screen Image file identifier for
the current Work Screen. Normally if a file already
exists with the default identifier the user is given the
option of overriding it, If he rejects this option he
is prompted for an alternative file identifier. This
command forces the alternative file identifier to be
requested even when no file exists with the default
identifier.

4 - 34

--

p

Wn

S9 causes FORMS-2 to halt after display of each line of
code during DDS generation. FORMS-2 re-ACCEPTs the line
before outputting it to the .DDS file. This provides
the programmer with a limited editing capability, which
may prove useful under special circumstances.
This facility is not available if option C or G (for
generated programs) is specified at screen I02.

Cursor Coordinate Command

Causes the coordinates of the current cursor position to be
displayed at the command area position. This display lasts a
few seconds, after which the Work Screen contents at the
command area are restored and control is returned
automatically to EDIT MODE. Where sequential field numbers
are being used within datanames, this command provides an
easy alternative method of ascertaining the coordinates of
any field.

Window Commands

These commands a re not available if op t io n G (for Index
Program) is specified at screen I02.

The "window" defines the area (full lines) to be processed by
FORMS-2 when generating DDS text. By default the window is
the full screen. Where window start or end is other than
start or end of screen, a delimiting line of hyphens may
optionally be displayed on the line just outside the window,
e . g. if window st a rts i n line 4, de limit ers appear along th e
length of line 3.

The prin cipal use of the window is to allow a form to be
created in situ, but save memory by avoiding the description
of blank lines at the top of the screen.

NOTE:

Where window is used in this way the generated record
name incorporates the start line number of the window
which can then act as a guide to the programmer, using
the CIS or L/II COBOL ACCEPT/DISPLAY AT coordinates
facility.

4 - 35

NOTES:

The detailed commands give the user very comprehensive window
formatting capability as follows:

w

Wl

W2

W3

W4

ws

(or WO) positions the cursor at current window start,
This is the equivalent of the HOM (\) key when the
window facility is in use.

sets start of window to current line with delimiters on
previous line

sets end of window at end of current line with
delimiters on next line.

sets start of window to current line without delimiters.

sets end of window at end of current line without
delimiters.

displays delimiters preceding current window start.

W6 displays delimiters following current window end.

W7

W8

W9

erases start delimiters and restores any Work Screen
data to display,

erases end delimiters and restores any Work Screen data
to display.

positions the cursor at current window end.

1, Delimiters do not corrupt Background/Foreground contents.

2.

3.

The output Screen Image will include the full Foreground part of
the Work Screen without delimiters, irrespective of whether a
window has been defined. This could be used to include annotation
on the Screen Image which does not affect DDS generation.

A useful purpose for the window facility would be if a form is
required to be displayed in two stages: the first 10 lines then
the second 10 lines, This could be created as a single Screen
Image including both sections of the form, and the programmer
could 'window in' on the relevant portions as required when the
DDS text is generated.

4 - 36

,_.,I

ftllllll
I

WORK PHASE COMPLETION

To complete the Work Phase of FORMS-2, the user selects Command Mode, keys
the SPACE character and then the RETURN character. The SPACE character is
the command to release the Work Screen for processing.

FORMS-2 completes the Work Phase (depending on the file selection at screen
102) as follows:

1.

2.

3.

4.

If this is a variable data field definition Work Phase (Option C or D
at screen WOl), validation then occurs with the message:

WORK SCREEN VALIDATION in progress - DO NOT press RETURN

If DDS file generation is selected at screen 102, the source code
produced is echoed to the screen as it is written to disk. If the S9
command was specified processing stops after each line of code to
enable changes to be made as required. This is recommended only if
special requirements dictate its use.

If a screen image file was requested at screen 102, the screen image is
echoed to the screen as it is written to the disk file. The identity of
the created file is displayed and the user must press RETURN to
continue.

Screen WOl is redisplayed so that the run can be terminated or
continued.

NOTES:

1.

2.

During validation of variable data only those characters listed in the
description of text-types are permitted (plus space). If any other
character is encountered, an error is notified by the validation
routine by alternately displaying "?" and the offending character to
give a flashing effect, This error indication then ceases and FORMS-2
returns to Edit Mode with the cursor positioned under the erroneous
character. The user must reissue the SPACE command after making any
corrections.

FORMS-2 will allow editing characters but will not verify that the
combinations of these are valid; COBOL editing rules must therefore be
obeyed to ensure error free code. Note that these fields should be
separated by spaces.

3. Only Foreground data is output to the Screen Image file.

4 - 37

~ I

CHAPTER 4

DATA DESCRIPTIONS

This Chapter describes the CIS or L/II COBOL Data Descriptions that FORMS-2
can generate in the file filename .DDS, and a knowledge of COBOL is a
prerequisite for reading it.

The CIS and L/II COBOL extensions to the ACCEPT and DISPLAY verbs allow
comprehensive screen handling to be included in a user application. (See
CIS or L/II COBOL Language Reference Manual). Programming the necessary data
description statements can be tedious and expensive in terms of programmer
time, particularly since it is very prone to simple errors.

FORMS-2 simplifies the production of error-free data descriptions by
allowing screen la youts (forms) to be specified in the most convenient way,
namely by setting them up in situ on the screen as described in Chapters 2
and 3. If the facility is invoked by selection of an appropriate option at
screen 102 during the Initialisation Phase, FORMS-2 automatically converts
this input to the necessary COBOL statements and outputs these to a data
description (DDS) file. The user merely incorporates this code in his
source application code by means of the CIS or L/11 COBOL COPY verb and uses
record-n ames and data-names consistent with those generated by FORMS-2.

RECORD-NAME AND DATA-NAME GENERATION

At Initialisation screen 101 a base name is requested from the user. This
is a 6-character field into which the user enters a chosen name consistent
with COBOL data namin g (See CIS or L/11 COBOL Language Reference Manual) .
This base is then use d to genera te the COBOL data-names.

RECORD NAMING

The default record-name format generated by FORMS-2 for inclusion in the
user's COBOL source program for screen formatting is as follows:

bbbbbb-rr (01 level)

wher e : bbbbbb is the 1-6 character ba se specified at screen
INOl

rr is the record number, start i ng at 00 in the first
Work Phase and increasing by one for each subsequent
Work Phase.

4 - 38

NOTE:
If the window commands are used to define a window starting in other
than line l then the record-name generated will be:

bbbbbb-rr-11

where 11 is the line number. This serves as a useful reminder to
the programmer when coding the appropriate ACCEPT/DISPLAY
statements.

DATA NAMING

The elementary data-name structure generated by FORMS-2 for inclusion in the
CIS or L/II COBOL source program for screen formatting is as follows:

bbbbbb-rr-nnnn

where: nnnn is the sequence of this field within the screen,
starting at 0001.

Sometimes it may be more convenient to the programmer to have the screen
coordinates incorporated in the data-name rather than a field sequence
number. This can be achieved by use of the G command during the Work Phase.

PICTURE GENERATION

Generation of PICTURE clauses by FORMS-2 depends on the type of text
selected at screen WOl at the start of each Work Phase, Note that FORMS-2
will force field boundaries at the end of each line in order to be
compatible with certain types of CRT.

FIXED TEXT

At the end of a fixed text Work Phase FORMS-2 generates only FILLER areas or
named alphanumeric fields with associated VALUE clauses.

The CIS or L/II COBOL interactive ACCEPT and DISPLAY verbs operate only on
named fields; FILLER areas are left alone. The time taken to display a
screen depends both on the size and also the number of constituent fields.

When processing fixed text screens, FORMS-2 by default generates FILLER
wherever multiple spaces appear. This default can be altered by means of
the J command described in Chapter 3. Alternatively (underline) can be
used to force inclusion of spaces within a VALUE clause. The default
character used for this purpose can be changed by means of the M command
described in Chapter 3.

4 - 39

-

-

-

VARIABLE DATA FIELDS

At the end of a variable data Work Phase FORMS-2 generates alphanumeric,
numeric or numeric edited fields depending on the actual characters keyed by
the user (see Chapter 3). These are usually normal CIS or L/II COBOL
picture characters 9 and X but note the additional use of 8 and Y as
alternatives to 9 and X; and also the exclusion of S, V and Pas described
under Variable Data in Chapter 3.

EDITING THE DDS FILE

Normally the DDS output from FORMS-2 should be all that is required. Where
special circumstances dictate the use of particular datanames or the
disallowed picture characters, the 59 command (See Chapter 3) will allow DDS
lines to be edited prior to output. Alternatively a conventional text editor
can be used to edit the file. However note that this editing process must
be repeated if ever the form ia amended by means of FORMS-2.

It is also possible to suppress completely the DDS output for a particular
Work Phase by mt,.ans of the Sl command. Note that if this is used the record
number incorporated in data-names will still be stepped up by 1 for the next
Work Phase.

INCORPORATION OF DDS FILE CONTENTS

All that the user has to do to incorporate the generated data descriptions
into the application program is to copy in the DDS file using the COPY
statement available in CIS or L/II COBOL. This is described in the CIS or
L/II COBOL Language Reference Manual.

The COPY statement to incorporate the DEMOl sample forms designed in
Chapter 7 would be:

000000 COPY "DEMOl.DDS".

and would be coded within the Data Division.

This statement is included in all Check-Out or Index programs generated, and
any of these can be referred to for an example.

4 - 40

-

CHAPTER 5

THE CHECK-OUT PROGRAM

This Chapter describes the Check-Out program that FORMS-2 can generate
automatically while generating the created forms. The Check-Out program
enables the user to:

*
*
*
*

Validate the DDS file
Demonstrate the operation of the proposed application
Check the use of the new forms for data entry
Check the use of the new forms for data amendment

The Check-Out source code which is in COBOL includes a COPY statement for
the DDS file exactly as it would be coded in the user's application and is
therefore a true validation of the DDS file when compiled.

The Check-Out program logic is a sequence of DISPLAY or ACCEPT statements
for the screens defined in the FORMS-2 run, in the order in which they were
created. Therefore by entering all required forms in a single FORMS-2 run,
a demonstration program using all the forms can be simply and rapidly
created, with no programming necessary. For a complex application the best
method might be to create each form in isolation, using screen image output
only. FORMS-2 can then be run again to produce the required Check-Out
program, using the facility to re-input screen images (the FF command or the
F command and the F option in the subsequent screen display). Use of this
facility would also enable a complex sequence of screens to be set up for
demonstration purposes incorporating the same screen more than once.

After passing through the sequence of screens, Check-Out gives the option of
repeating the whole sequence. On the second pass previously entered data is
redisplayed, allowing the user to check the use of his forms for both
initial data entry and data amendment.

4 - 41

CHECK-OUT PROGRAM GENERATION

The facility is invoked by selection of an appropriate option at screen 102
during the Initialisation Phase. Note that the default option results in
generation of the Check-Out Program.

The source code of the program is written to a file named:

basename.CHK

where: basename is the name entered by the user at screen 101 during the
Initialisation Phase.

CHECK-OUT PROGRAM COMPILATION

The program is then compiled from the CHK file. The following files must be
present during compilation:

basename.DDS

FORMS2. CHl I
FORMS2.CH2 ~

the DDS file produced in the FORMS2 run. This must be
on the device/directory selected at Screen 102, or the
default drive if none was selected.

the skeleton for the Check-Out program on the default
device/directory

The Check-Out program is then compiled in the usual way by entering the
standard CIS or L/11 COBOL compile command for your Operating System with
the source file:

basename.CHK

See Appendix D

Details of compilation using the CIS or L/11 COBOL Compiler are given in the
appropriate Operating Guide.

4 - 42

-

-.,

-

!WI!
!

CHECK-OUT PROGRAM RUNNING

LOADING

The program can be loaded immediately after compilation by use of the
standard 0/S run command and the name of the intermediate code file:

basename.INT

However, to be able to load directly in subsequent use the= parameter of
the run command should be used and the SAVE file renamed. (See Appendix D
for Operating System specific commands). Thereafter the direct load command
can be used.

CHECK-OUT PROCESSING

The basic function of the Check-Out program is to display the fixed text
fields of the form and enable data to be entered into the variable data
fields of the form in the sequence in which the screens were created.

However the detailed logic is slightly more sophisticated. The following
notes make references to the options taken for screen type at Screen WOl,
and these are discussed in Chapter 3.

Fixed Text Screens

The fixed text of a form is displayed. If there are two consecutive fixed
text forms, Check-Out pauses after the first display until the user presses
RETURN.

Fixed text on clear screen

If option A was taken at creation of the form, Check-Out clears the CRT
before displaying the screen.

Fixed text on last screen

If option B was taken for the creation of the screen, any text displayed
remains on the CRT except where it is overwritten by the text of the new
screen.

Variable Data Screens

An ACCEPT statement is issued for a variable data screen, allowing the user
to enter data in the unprotected areas, (i.e. the fields specified by mear,:;
of X's and 9's etc.).

4 - 43

Users can check the extents of the fields. For numeric fields they can also
check that only numeric characters may be entered, and the effect of
entering the left zero fill character ". ". (Use of the "." character is
described in the CIS or L/II COBOL Language Reference manuals under The
ACCEPT Statement).

On other than the first pass through the sequence of screens the previously
entered data is redisplayed before the ACCEPT is issued.

If the variable data screen includes numeric edited fields, the ACCEPT for
the screen is followed by a corresponding DISPLAY to show the effect of the
editing or normalisation performed by the CIS or L/II COBOL run time
systems. Note that the normalised fields are not automatically echoed to
the CRT.

CHECK-OUT COMPLETION

After the entire sequence of screens has been passed, the Check-Out program
displays:

CHECK-OUT completed
Repeat? [NJ (Y=Yes)

If it is required to repeat the sequence of screens, Key Y and pre s s RETURN.

Otherwise simply press RETURN to take the default to terminate the program.

4 - 44

-
-

-

CHAPTER 6

SCREEN IMAGE FILE

This Chapter describes the Screen Image file that FORMS-2 can generate in
addition to (or instead of) the COBOL data description statements described
in Chapter 4. These files contain exact text images of the user described
forms. These form images can be:

*
*
*

Used to provide the basis for amendments to the form.
Printed to yield printed copies of the form.
Used as a means of communication between the system designer and
the applications progr ammer,

SCREEN IMAGE FILE GENERATION

The facility is invoked by selection of an appropriate option at Screen 102
during the Initialisation Phase. Note that the default option will cause
screen image ourput.

Screen images are output to files named:

basename.Snn

where: basename is the name entered by the user at screen IOl
within the Initialisation Phase. nn is a number 00 - 99

The default filename can be overridden by issuing the S3 command during the
Work Phase. This causes FORMS-2 to request input of the required filename
during processing of this Work Screen,

A separate file i s created at the end of each Work Phase, the numeric part
of the name (nn) incremented by l each time. A screen image file is
structured as a standard line sequential file with a record for each line of
the screen. Each screen image contains only text entered during the Work
Phase in which it is generated (i.e. Foreground data - see Chapter 3). Thus
for a variable data Work Phase the output screen image contains only X's,
9's, Y's and S's .

It is possible to suppress the screen image output from any Work Phase by
issuing the S2 command during that phase. If this command is used the
numeric part of the filename extension will still be updated for the next
phase to keep in line with the record numbering within the generated data
descriptions (DDS).

4 - 45

FORMS-2 MAINTENANCE

The COBOL Data Description statements have been generated from a
user-designated form by FORMS-2 in a DDS file. There is likely to be a
continuing requirement to make corrections and adjustments to maintain the
form. The DDS file can be maintained using a conventional text editor, but
this involves the high risk of simple but expensive errors which FORMS-2
eliminates. Therefore the user's form is output to a screen image file as
an exact image, and FORMS-2 provides the facility to read screen images back
from disc to allow for further amendment. This is achieved by running
FORMS-2 and issuing the FF command once the first Work Screen is reached
(see the Fx Work Screen Manipulation command in Chapter 3). The user is
then prompted for the identity of the screen image required. FORMS-2 reads
the screen image file into the Foreground area of the Work Screen and then
returns to Edit Mode. The form is then displayed as if it had just been
keyed and any required amendments can be made before releasing the screen
for processing by means of the SPACE command.

NOTE:

When FORMS-2 is used for maintenance in this way it will overwrite the
existing files, but only after issuing warnings that the files already
exist, and receiving confirmation to proceed • . For screen image files
FORMS-2 offers the facility of specifying an alternative file identity
if the user wishes to retain the old version.

PRINTED FORMS

The screen image files are created as line sequential files in accordance
with the conventions of the operating system. Standard software can
therefore be used to print them, and the resultant hard copy will be an
exact image of the user's form with no risk of transcription error.

FORM IMAGES IN THE DESIGN PROCESS

Form images can be used as a step within the applications design process,
providing a valuable part of the designer/programmer interface.

For interactive applications, design of the user interface (i.e. the screen
layouts or form ·s) may tak e place well in advance of the actual program bein g
written, and the forms designer need not have any detailed knowledge of
COBOL.

FORMS-2 enables a non-technical user to generate valid COBOL statements. An
experienced COBOL programmer can make use of commands available to generate
the most efficient code (e.g. by influencing the number of fields to be
displayed).

4 - 46
-

ll1llffl
I

Thus it may sometimes be advantageous to use screen image output alone as an
intermediate stage in the design process, with the programmer using the
image files as input to FORMS-2 to produce the final DDS file. If FORMS-2
is used in this way, both fixed text and variable areas could conveniently
be indicated on a single fixed text screen. The programmer can easily then
use this screen to generate the DDS file, and the form designer does not
need to know any details of COBOL data field specifications.

4 - 47

~
_;

-'

Ila
I

,.
I

CHAPTER 7

FORMS-2 USER SCREEN
GENERATION EXAMPLE

It is required to build the data entry form:

NAME
ADDRESS

TEL

where NAME and ADDRESS are alphanumeric fields and TEL is a numeric field .
At data entry time a fter insertion of the name, address and telephone
number : P . Smith, 8 George Street, Plymouth, Devon, 88326, the form is
required to appear as:

NAME [SMITH. P
ADDRESS (8 George Street,

[Plymouth
[Devon

TEL (88326

4 - 48

It is assumed the system is booted, the issued files have been copied to the
CIS or L/II COBOL O/S system disk so that the CHK file contents can be
compiled (Step 13), and that FORMS-2 has been configured to your CRT.

The following steps must then be carried out:

l.

2.

3.

4.

5.

The operator loads FORMS-2 by entering the load command for your 0/S.

Note that the program name for load purposes is FORMS2.

See Appendix D for specific Operating System format for this command.

FORMS-2 displays Screen 101 requesting a six-character base for
file-names and data-names followed by three other questions. If the
CRT is standard (24 lines) no further questions need be answered for
this screen. Key DEMOl followed by the RETURN key if the default
screen size (24) is correct.

FORMS-2 displays Screen 102 to request the output file option type and
drive number. Key RETURN to accept the default values.

FORMS-2 displays Screen WOl to request the Screen Type option. Note
the default "A" and press the RETURN key,

FORMS-2 displays a blank screen. Use the cursor control keys and the
normal character keys to set up the following text on the screen:

NAME
ADDRESS

TEL

Press the RETURN key.

4 - 49

~ I

-

6.

7.

8.

9 .

FORMS-2 puts 11 11 in the top left of the screen. Press the SPACE and
RETURN keys

FORMS-2 processes the screen to create a fixed text form. This takes a
short period and involves the following displays on the CRT:

DDS source code as generated, followed by a redisplay of the fixed
text as it is written to the Screen Image file.

A message is then displayed giving the name of the fixed text Screen
Image file created. Press RETURN as requested.

FORMS-2 displays Screen WOl to request the Screen Type option. Note
the default is 11C11 and press the RETURN key.

FORMS-2 displays the fixed text screen as background data. The
operator then uses the cursor control keys and keys in X's and 9' s
alone to set up the screen as follows:

NAME
ADDRESS

TEL

[XXXXXXXXXXXXXXXX)
(XXXXXXXXXXXXXXX]
[XXXXXXXXKXXXXXXXXXXX)
(XXXXXXXXXXXXXXX]
(9999999]

Press the RETURN key

10. FORMS-2 displays 11 11 in the top left hand of the screen; press the
SPACE and RETURN keys. There is a short pause while FORMS-2 validates
the screen content, during which the following message is displayed:

WORK SCREEN VALIDATION in progress - DO NOT press RETURN

11. FORMS-2 processes the X's and 9's to create a variable data form, with
the following displays to the CRT as it goes:

4 - 50

DDS source code as generated, followed by a redisplay of the
variable text as it is written to the Screen Image file.

A message is then displayed giving the name of the variable data screen
image file created. Press RETURN as requested.

12. FORMS-2 displays screen WOl again. Key ! followed by RETURN to
terminate the run. FORMS-2 displays the names of the DDS and CHK files
created and displays an END OF RUN message.

13. Compile the check-out program by typing the standard CIS or L/II COBOL
compilation command for your Operating System with the directive
COPYLIST and file name DEMOl.CHK (See Appendix D).

14. When the compilation finishes, the two screens can be checked out by
using the standard run command for your Operating System to load the
intermediate code from file:

DEMOl.INT

See Appendix D

15. The Demonstration program will then run. The fixed data form is
displayed on the screen. The variable data form is used to accept
data.

Satisfy yourself that the cursor can only be placed in the variable
fields, and that the data keyable into the fields depends on whether X
or 9 was specified. The effect of left fill character"." may also be
tested.

When satisfied, press RETURN to complete. A message is displayed as
follows:

CHECK-OUT completed
Repeat? [NJ (Y=Yes)

Press RETURN to accept the No default and complete.

16. The Check-Out program displays:

NOTE:

END OF FORMS2 CHECK-OUT

The variable form is used in the demonstration for ACCEPTing data. In
practice the form can be used for DISPLAYing data as well as ACCEPTing
it. The demonstration shows the extent and type of each field which
will be the same in DISPLAY as well as ACCEPT. A useful technique for
clearing just the variable data fields on the screen is to move spaces
to the ACCEPT record and then display it.

4 - 51

-

-
--
-

-
17. You can now examine the disk files:

DEMOl .DDS
DEMOl.CHK
DEMOl. 500
DEMOl. S01
DEMO!. INT
DEMOl. LST

to check the output from FORMS-2 during this use.

18. You have now learnt how to use FORMS-2 to create screens of fixed and
variable data automatically for inclusion in your CIS or L/II COBOL
program.

If you continue with steps 19 onwards you will learn to update both the
fixed and variable data screens already created by moving them from
background into foreground.

19. Reload FORHS-2 by typing the load command for your 0/S. See Appendix
D.

20. FORMS-2 displays Screen IOI
data-name base as at step 2.
2 and press RETURN.

requesting the six-character file- and
Answer the questions as necessary at step

21. FORMS-2 displays Screen 102 requesting the output file option type and
drive number; key RETURN to accept the default values.

22. FORMS-2 displays the message:

DEMOl.DDS already exists
overwrite? [N] (Y;Yes)

Key Y and press RETURN

NOTE:

If the No default is entered here, the run is abandoned.

23. FORMS-2 displays the message:

DEMOl.CHK already exists
overwrite? [NJ (Y;Yes)

Key Y and press RETURN

NOTE:

If the No default is entered here, the run is abandoned.

4 - 52

24. FORMS-2 displays Screen WO! again. Press RETURN to accept the default
option A.

25. FORMS-2 displays a blank screen in Edit Mode. Press RETURN to enter
Command Mode, then F followed by RETURN to invoke the
Foreground/Background selection screen. (We want to update our form so
it must be in Foreground).

26. FORMS-2 displays the Foreground option screen. Enter option F then the
filename DEMOI.SOO, then press RETURN.

27. FORMS-2 displays screen W02 again. Select option A to return to Edit
Mode.

28. FORMS-2 displays the fixed text screen (previously created at step 5).
Move the cursor to the word ADDRESS and overtype it with ABODE.
Remember to overtype the extra characters SS with spaces, and then
press RETURN.

29. Enter the SPACE command, then RETURN.

30. FORMS-2 displays the following message reminding you that your altered
fixed text Screen Image is about to overwrite your previous Screen
Image in the file:

NOTE:

DEMOl.SOO already exists
overwrite? [NJ (Y=Yes)

If the No default was entered here, a file identity for a new
Screen Image would be requested.

31. FORMS-2 displays the screen image and then displays the file name as
follows:

File created= DEMOI.SOO

Press RETURN to continue.

32. FORMS-2 displays screen WOl with option C as default to enable
specification of variable data fields. Enter RETURN to accept the
default.

4 - 53

-

-

33. FORMS-2 displays the altered fixed text as follows to assist in
defining the variable fields.

NAME
ABODE

TEL

Press RETURN to enter Command Mode then F then RETURN.

34. FORMS-2 displays the Foreground/Background Operations screen again.
Enter the option F then the file name DEMOl.SOl, then press RETURN to
retrieve your variable text created at step 9.

35. FORMS-2 displays Screen W02 with option H as default. If you press
RETURN to accept this default, FORMS-2 dis pl ays the current Foreground
contents, Note that this is only the X's and 9 's that define the
variable data fields (the fixed text is in the Background area). Press
RETURN to re-invoke Screen W02.

36. FORMS-2 displays Screen W02 with A as default. Press RETURN to accept
this default.

37. FORMS-2 displays the whole form again.
variable text fields if required).

(We could now alter the

You have now seen facilities to retrieve fixed text and variable text
from previously created files. Note that with a small number of
variable data fields such as in this example it would, in practice, be
easier to re-key them.

4 - 54

38. Press RETURN then SPACE then RETURN to process the altered form. Again
there is a pause while FORMS-2 validates the variable fields.

39. FORMS-2 produces the DDS file then displays the message:

DEMOl.SOl already exists
overwrite? [N) (Y;Yes)

40. A message is displayed as follows:

File created; DEMOl.SOO

41. FORMS-2 displays screen WOl again. This time enter
to complete the run.

and press RETURN

42. Repeat steps 13 to 16 if you wish to run the Check-Out program again to
verify the altered form.

4 - SS

--

-

-

CHAPTER 8

INDEX PROGRAM

FORMS-2 provides facilities for automatically generating a COBOL Index
program to create and maintain an indexed sequential file. The input
required to generate the Index program and use it to maintain files is
supplied interactively by the Operator through the CRT.

The user designs a data entry screen using FORMS-2 by specifying the fields
that will comprise the indexed sequential file records in the usual fixed
text and variable text work phases described in Chapter 3.

The user interface to the generated Index program is simply the form
designed by the user that reflects the desired record structure. Users need
give no thought to setting up specific 'command' areas, but only to consider
their data requirements.

It should be noted that the user mu.st have access to the CIS or L/II COBOL
software to compile the source Index program that FORMS-2 produces.

The generated Index program is written to the file filename.GEN and provides
the following facilities required for the;ocreation and maintenance of an
indexed sequential file.

* Select records by key field for display (Enquiry by key field)

* Select records sequentially for display (Sequential Enquiry)

* Amend existing records

* Delete existing records

* Insert new records

The program has been developed so that it is not necessary for the user to
explicitly state the facility to be invoked at any one time; the program is
able to follow the logic from the way the actual data and cursor position
are manipulated.

It can be seen that only the variable text data is written to the file and
the fixed text data is merely a template to enable each field to be entered
separately at data entry time.

A record in the indexed sequential file is constructed by concatenating the
variable fields of the form, in the order in which they appear. The record
must include a key area by which it can be uniquely accessed. The Index
program logic requires that this key area must be at the beginning of the
record Le, must be the first integral field/s in the form, and must not
exceed 32 characters in length.

This key area constitutes part of the record data. For convenience, the
remaining fields are known as the data fields.

Chapter 9 shows the sample application used in Chapter 4 adapted to create
and maintain a file of names, addresses and telephone numbers.

4 - 56

INDEX PROGRAM GENERATION

An Index program is generated using FORMS-2 as described in Chapters 2 and
3.

All existing FORMS-2 facilities are present, but logic is incorporated to
prevent the use of inappropriate features if the Index Program option is
taken. The steps involved are:-

l. Initialisation

a. Screen 101
Specify name-base etc. as normal

b. Screen 102
Specify option G for Index program generation.

2. Work Phase One

a. Screen WOl

Work Screen Selection - The program forces the default option 'A'
for fixed text entry by refusing to accept anything else (except !
to abandon the run or? to display Help screens).

b. Fixed Text Work Screen

A blank work screen is then displayed for input of the fixed text
form.

FORMS-2 commands as described in Chapter 3 are available except:-

G

s

w

The generated program relies on the default dataname
structure. Thi s command is rejected.

It would be inappropriate to switch off DDS generation,
and this command is rejected.

This feature is not available to the user, and the
command is rejected. However the program reserves the
bottom line for potential use in the generated program
for system messages ("RECORD NOT FOUND" etc.), and a
delimiting line of hyphens marks this fact.

The screen is released for processing by the sequence 'RETURN
SPACE RETURN' , when the fixed text screen has been completely
entered.

The Work Screen Selection screen is again displayed.

4 - 57

-

-

-I
3. Work Phase Two

a. Screen WOI

b. This ti me the pr ogr am forces th e default option 'C'.

Variable fields are specified as described in Chapter 3 i.e. ,
X/Y/8/9 and editing characters. At some time before releasing
this screen it is necessar y to define the end-of- key/s tart-of-data
bound within the record. This is done by positioni ng the cursor
on the first data field, entering Command Mode and keying the '*'
command (i.e. the sequence 'RETURN* RETURN').

NOTE:

A key field cannot exceed 32 characters.

The screen is released by the usual 'RETURN-SPACE-RETURN'
sequence. If the program is not satisfied with the specification
of the key/data boundary it will return to Edit Mode.

Upon completi0n of the variable text screen FORMS-2 completes its
processing and terminates automatically w.ithout any need for the
t e rmination (!) command. I n fact the ! command is only used to
abandon the run when generating the Inde x Pr ogra m.

FILES GENERATED

The following files are written to disk ·by FORMS-2.

basename.SOO
basen ame.SOI
basen ame .DDS
ba se name.GEN

Screen image files

COBOL data desc ription statement f ile
Source file for the generated Index program.

4 - 58

INDEX PROGRAM COMPILATION

The Index program can now be compiled from the .GEN file in the usual way .
The following files must be present during compilation:

basename.DDS

FORMS2 .GNl ~

FORMS2. GN2 I

the DDS file produced in the run. This must be on t he
device / directory selected at screen 102, or t he default
if none was specified.

the skeleton for the generated program on the Default
device/directory.

The Index program i s then compiled in the usual way by entering the standard
CIS and L/II COBOL compilation command for your Operating System (0/S) to
load the Index program from file:

basename.GEN

See Appendix D

Details of compilation using the CIS and L/I I COBOL compilers are gi ven in
the appropriate Oper a ting Guides.

After compilati on, the user can run the generated program.

INDEX PROGRAM RUNNING

LOADING

The program can be loaded immedia tely after compilation by using the
stand ard run command for your Oper a t i ng System to load the progr am from
file :

basename.INT

However, to be able to load directly in subsequent use the = directive of
the command must be used, and the SAVE file renamed to basename.COM. See
Appendix D for the commands for your 0/S and the CIS or L/II COBOL Operating
Guide for fuller details of load dir ectives. Thereafter the di rect load
command can be used.

4 - 59

-

lll\lii\
I

DATA PROCESSING FACILITIES

Immediately the program is loaded, the user designed form is displayed.

The form remains on the screen throughout a run, processing being controlled
by manipulation of the data in the variable fields.

A screen display reflects the structure of a single record. The required
processing function is instigated by entering data and positioning the
cursor as described below, and then pressing the RETURN key. Index program
messages are displayed in an unused area of the screen as necessary.

The basic operator functions and Index program messages are described below,
and will suffice in general use. Details of the Index program
interpretation of data manipulation and cursor position follow this
description.

Enquiry by Key Field

Amend key fields only to required key, and press RETURN. The required
record is displayed. If the record is not found (i.e. key cannot be found)
the message RECORD NOT FOUND is displayed.

Sequential Enquiry

Simply press RETURN to show next record. If the end of the file is reached,
the message END OF FILE - RETURN WILL TERMINATE is displayed.

Amend Displayed Record

Amend data fields only and press RETURN. The message RECORD AMENDED is
displayed.

Delete Displayed Record

Press the HOM or '\ key then press RETURN. The message RECORD DELETED is
displayed and the data fields are blanked out.

4 - 60

Insert New Record

Amend key and data fields as required and press RETURN. If the data fields
currently displayed do not need changing (i.e. it is required to enter the
existing data fields under a new key) prior to pressing RETURN,
either press HOM (,) OR press! repeatedly until end of the last data field
is reached.

The message NEW RECORD WRITTEN is displayed if insertion takes place.

If a record already exists with the specified key the current display is
retained and the warning message RECORD ALREADY EXISTS WITH THIS KEY is
displayed. The facilities available on the subsequent input are restricted
to three as follows:

l. Force replacement of existing record:

Either press HOM or press i repeatedly until
of the last data field, then press RETURN.

the cursor reaches the end

The record is replaced and, the message RECORD REPLACED is displayed.

2. Amend key field and re-attempt the insertion:

Amend key fields and press RETURN (cursor position is immaterial).

3. Abandon insertion attempt and display existing record:

Press RETURN only.

Terminate Run

Enquire up to the end-of-file by means of continual sequential enquiry or a
combination of enquiry by key to a specific record, then sequential enquiry.

When end-of-file is reached the message END OF FILE
TERMINATE is displayed. Press RETURN to terminate the run.

4 - 61

RETURN WILL

--

USE ON MULTI-USER SYSTEMS

The Index program is compatible with the FILESHARE optional product for use
with LEVEL 11 and CIS COBOL.

The Index program will lock any record that you access, thus preventing
another user from updating that record whilst you are processing it, The
lock is released when you move on to another record. Similarly it will not
make available to you a record which another user has locked.

The effects on Index operation are as follows:-

If you attempt to read a record, either by sequential enquiry or by key,
and that record is locked, the message RECORD LOCKED is displayed, The
key of the locked record is displayed but the data fields are blanked out.
On the subsequent input you may:

1. Retry the enquiry,
Press RETURN only.

2. Abandon the enquiry and read next record;
Move cursor away from default (start-of-data)position and press
RETURN.

3. All other functions operate as normal:
i.e., as though the enquiry had failed with RECORD NOT FOUND.

Amend Displayed Record

This will be unaffected because the preceding read will have locked the
record, denying any other user access.

Insert New Record

If a record exists with the specified key then RECORD ALREADY EXISTS WITH
THIS KEY will be returned irrespective of whether the record is locked or
not. The subsequent imput is as described earlier for that condition,
except that:

1. If you attempt to force replacement and the record is locked, the
message EXISTING RECORD LOCKED is displayed. The subsequent imput is
again as described for the RECORD ALREADY EXISTS condition.

2. If you simply try to display_,,,,the existing record and it is locked, this
will be handled exactly as described under ENQUIRY.

4 - 62

NOTE: Immediately after update operations (Amend/Insert), Index attempts
to read the record again to re-establish the lock:

Under exceptional circumstances it is possible for another user
to read the record, thus locking it for his own purposes, before
the lock can be re-established. In this case the normal message
confirming the update will be displayed, immediately followed by
the RECORD LOCKED message and blanking of the data fields. You
will then be in the same position as if an enquiry had failed
because of a locked record, and the subsequent input is as
described under Enquiry

4 - 63

USER REQUIREMENT INTERPRETATION SUMMARY

The Index program interprets the user's requirements depending on the change
status of key and data fields and the cursor position as follows:

Key and Data Fields Unchanged

The function performed depends upon cursor position as follows:

*

*

*

*

If an end-of-file condition has just been reported, a request to
terminate the run is assumed irrespective of cursor position.

Otherwise if the cursor has been moved to the HOM position and a
record is currently displayed, a delete request is assumed.

If cursor is at start-of-data position (default) and a record
locked condition exists, a request to retry reading the locked
record is assumed.

If none of these conditions exists, a request to display the
next record relative to the I current' position in the file is
assumed, and either the record is displayed, or a lock condition
is reported, or an end-of-file condition is reported.

Key Changed and Data Unchanged

The function performed depends on cursor position as follows:

*

*

If cursor is moved to either the HOM position or the last data
character position, an attempt to insert a record is assumed, and
processing is as described under Key and Data Changed

Otherwise an enquiry with respect to this key is assumed, and
either the record is displayed or its absence is reported, or
a lock condition is reported.

Key Unchanged and Data Changed

This is a request to update the file. If a lock has previously been estab
lished against this record it will be amended. Otherwise an insert attempt
is assumed, and processing is as described under Key and Data Changed.

4 - 64

Key and Data Changed

This is a request to insert a new record. However, it is assumed that the
user should not overwrite a record without at least being infor med of its
presence. Therefore if a record exists with the specified key , a warning
message is displayed, and the subsequent three functions can be performed
depending on the change status of key and data fields and the cursor
position:

1.

2.

Key and Data Unchanged

The function required depends on cursor position as follows:

*

*

If the cursor has been moved to either the HOM positi on or the
last data character position, a request to overwrite th e existing
record is assumed. Either the existing record is overwritten, or
an existing-record-locked condition is reported in which case the
subsequent input is processed in the same way as the current input.

If the cursor is at any other position a request to abandon the
insertion attempt and display the existing record is assumed, and
processing is as described under Key Changed and Data Unchanged.

Data Unchanged and Key Changed

An attempt is made to insert the data under the new key irrespective of
cursor position. If necessary the warning message will be repeated.

3. Key and Data Changed

A normal insert request as described above is assumed.

4 - 65

-

CHAPTER 9

USER INDEX
PROGRAM EXAMPLE

It is required to generate an indexed sequential file that contains records
of names, addresses and telephone numbers with name as key field, and
process these records using the form as used in Chapter 7:

NAME
ADDRESS

TEL

NAME and ADDRESS are alphanumeric fields and TEL is a numeric field.

4 - 66

At data entry time after insertion of the name, address and telephone
number: P. Smith, 8 George Street, Plymouth, Devon, 88326, the form is
required to appear as:

NAME
ADDRESS

[SMITH. P
[8 George Street,
[Plymouth
[Devon

TEL [88326

It is assumed the system is booted, the issued files have been copied to the
CIS or L/II COBOL CP/M system disk so that the Index program can be compiled
(Step 13), and that FORMS-2 has been configured from your CRT.

The following steps must then be carried out:

l.

2 .

3.

The operator loads FORMS-2 by entering the load command for your 0/S.
See Appendix D for specific Operating System format for this command.

FORMS-2 displays Screen 101 requesting a six-character base for
file-names and data-names followed by three other questions. If the
CRT is standard (24 lines), no further questions need be answered for
this screen. Key DEM02 followed by the RETURN key if the default
screen si ze (24) is correct .

FORMS-2 displays Screen 102 to request the output file option typ e and
drive number. Key G then RETURN to select the option for the Index
program.

4. FORMS-2 displays Screen WOl to request the Screen Type option. Note the
default "A" and press the RETURN key.

4 - 67

-

,..,

s.

6.

7.

FORMS-2 displays a blank screen with the end of window one line up from
the bottom of the screen and delimiters in the bottom line. Use the
cursor control keys and the normal character keys to set up the
following text on the screen:

NAME
ADDRESS

TEL

Press RETURN key.

FORMS-2 puts 11 11 in the top left hand of the screen. Press the SPACE
and RETURN keyii:"°

FORMS-2 proc esses the screen to create a fixed text form. This takes a
short period and involves the following displays on the CRT:

DDS source code as generated, followed by a redisplay of the fixed text
as it is written to the Screen Image file.

A message is then displayed giving the name of the fixed text Screen
Image file created. Press RETURN as reque s ted.

8. FORMS-2 displays screen WOl to request the Screen Type option. Note the
de f ault is 11C" and pr ess the RETURN key

4 - 68

9. FORMS-2 displays the fixed text screen as background data; now use the
cursor control keys and key in X's to fill the NAME variable data
field. Move cursor to the first character position in the address
variable data field and then press RETURN to enter Command Mode. Enter
* to set the first character position in the ADDRESS variable data
field as the start of data position and then press RETURN. Continue to
enter X's and 9's to fill the data fields as shown below.

NAME
ADDRESS

TEL

[XXXXXXXXXXXXXXXXXXXX)
[XXXXXXXXXXXXXXXXXXXX)
[XXXXXXXXXXXXXXXX)
[XXXXXXXXXXXXXXX)
[9999999)

Note that you have now specified the NAME variable data field as the
key field.

10. FORMS-2 displays 11 11 in the top left hand of the screen; press the
SPACE and RETURN keys. A message is displayed showing validation in
progress.

11. FORMS-2 processes the X's and 9's to create a variable data form, with
the following displays to the CRT as it goes:

DDS source code as generated, followed by a redisplay of the
variable text as it is written to the Screen Image file.

12. FORMS-2 terminates automatically after displaying the end of run
screen:

Files created DEM02.DDS
DEM02.GEN

END OF FORMS2 RUN

4 - 69

-

13. Compile the Index program by t yping the standard CIS or L/ll COBOL
compilation command for your Operating System (0/S) using the Index
program source file name:

DEM02.GEN

and the COPYLIST directive of this command.

14. When the compilation finishes, the generated Index program DEM02 can be
run by use of the standard run command for your 0/S to load the program
intermediate code from file:

DEM02. INT

The compilation and run commands for your 0/S are described in
Appendix D.

15. The generated Index DEM02 program will then run. Your screen as
designed in step 9 is displayed. The fixed text form i s displayed on
the screen. The variable data fields are used to accept data.

16. You are now ready ~o practice all the file maintenance commands. The
next steps show all of these in practice but you can vary the sequence
or add any steps to these once you have gained confid ence.

17. To insert the first record into the new indexed sequential file, simply
key names and addresses into the screen format terminating each record
by RETURN key . (Remember to enter surname first before initials to
keep the application feasible).

18. Enter two more complete records overkeying all data from the previous
record, because all displayed data is written to the file.

19. When th r ee records have been inserted, you can amend the second record
as follows :

Enter the name field as for the second record added followed by RETURN.
The whole record is displayed because the name is the key which finds
that record . You have now see n the enquiry facility operated. All
records can be recalled as easil y as that.

20. Change the town field and press RETURN. The message RECORD AMENDED i s
displayed.

21. Pres s RETURN and the t hird recor d i s dipla yed . You coul d progr ess
through a whole fil e in this way.

22. To delete the third record entered move the cursor to HOME position
and press RETURN. The fields clear showing deletion of that record,
and a messa ge RECORD DELETED is displayed.

4 - 70

23. Press RETURN. The Index program attempts to show the next record but
one does not exist so an end-of-file message is shown: END OF FILE
REACHED - RETURN WILL TERMINATE.

24. Press RETURN with end-of-file showing and termination occurs.

You have now seen the record handling method demonstrated and can, if
you wish, generate a more ambitious Index program or reload as at step
14 and familiarise further with record manipulation.

25. Before you do this, however, you can examine the files on the disk.

DEM02.DDS

DEM02.GEN
DEM02. INT
DEM02.LST

DEM02.IDX
DEM02.DAT

Data Description Statements for form (COBOL
source)
Source code of Index program DEM02
Intermediate code of Index program DEM02
List file code of Index program DEM02

Index file
Sequential data file Indexed Sequential file

NOTES:

1.

2.

The two files DEM02.IDX and DEM02.DAT constitute the Indexed Sequential
file created by the generated I ndex program, and in any furth er runs of
this program these two files will be used.

This example shows the demonstration program run in a single-user
environment. The program does however include facilities for use in a
file-sharing environment with the Micro Focus FILESHARE package and
appropriate error handling and notification is provided if used in this
environment and locked files or records are encountered.

4 - 71

-

19!!)
J

4 - 73

4 - 75

APPENDIX D

OPERATING FORMS-2 WITH CP/M

To clarify the sequences, the CP/M prompts are included before the commands
in this Appendix. The symbol<< indicates that the RETURN key or equivalent
should be pressed once.

It is assumed that CP/M is loaded and that the issued files have been copied
to the CIS COBOL CP/M system disk.

NOTE:

FORMS-2 is preconfigured for your CRT. It can be reconfigured if
necessary for any other special CRT.

FORMS-2 LOADING

To load FORMS-2 as issued, the command is:

B>FORMS2«

FOMRS-2 CHECKOUT PROGRAM COMPILATION

To compile the Check-Out program that enables you to check your fixed text
and variable data fields, the general command is:

B>COBOL basename.CHK COPYLIST<<

In the sample runs in Chapters 2, 7 and 9 basename is, of course, DEMOl and
DEM02 respectively.

4 - 78

FORMS-2 CHECK-OUT PROGaj\M RUNNING

The Check-Out program that enables you to check your fixed text and variable
data fields can be loaded immediately after compilation by the general
command:

B>RUN basename.INT<<

In the sample runs in Chapters 7 and 9, basename is, of course, DEMOl and
DEM02 respectively.

To be able to load the Check-Out program directly in subsequent use, the
following general command is entered:

B>RUN = basename.INT<<

Thereafter the general comma~d following can be used to load the Check-Out
program:

B>basename<<

FORMS-2 INDEX PROGRA}1 COMPILATION

To enable the Index program that processes an indexed sequential data file
from your FORMS-2 screens to be compiled the following general command is
entered: I

B>COBOL basename.GEN COPYLIST<<

FORMS-2 INDEX PROGRAM RUNNING

The Index program that processes an indexed sequential data file from your
FORMS-2 screens can be loaded immediately after compilation by the general
command:

B>RUN basename.INT<<

In the sample run in Chapter 9 basename is, of course, DEM02.

To be able to load the Index program directly in subsequent use, the
following general command is entered:

B)RUN basename.INT<<

Thereafter the general command following can be used to load the Index
program:

B>basename<<

4 - 79

I

•
ll

•
11

n
·-~

./

ll

•
Ii

•
•• • • •
!I . .

•
•:
• • • • -•

