§
"
"
.
.
.
2
.

= | Ii‘i iiii 1 ‘I"|‘

CIS COBOL with
ANIMATOR and FORMS-2

USER GUIDE

I’I I’I RM '

FEEEEEE R R E R R E RN E N EEEEREEERER.

‘T 131)

i1 31 3

'? '3 '3 3

3

3 ¥ 33 3 13

3 3

2 3

COMPILING AND RUNNING THE DEMONSTRATION PROGRAMS

We have provided you with three domonstration programs. The source code for
these programs is on the COBOL disk, in the files:

PI.CBL
STOCK1.CBL
STOCK2 .CBL

PI.CBL This program simply displays on the screen the
mathematical constant PI to 12 decimal places and is the
basic screen test for CIS COBOL DISPLAY.

STOCK1.CBL This program should not be run until you are confident
that PI.CBL is working correctly. It is the test for

CIS COBOL ACCEPT, which provides the basic interactive
functions, and Indexed file Input-Output.

STOCK2.CBL This program uses a data file created by running STOCK1
and hence 1is dependent on having run that program
successfully. The source code contains a deliberate
error, which does not affect the program's execution but
is there as an example of a CIS COBOL error message.

These programs introduce you to the simple compile and run development cycle
of CIS COBOL. They also give an indication of the way in which very simple
CIS COBOL programs can have sophisticated screen and file handling features.
PI.CBL
To compile PI, load into Drive A a disk which contains the file PI.CBL and
also has some spare capacity for two other files which will be created
during the compilation.
Now either reset the system or perform a warm boot by keying ctrl-C.
When you get the prompt:

A>
key in the command line:

COBOL PI.CBL

and press RETURN.

303

v
'

'3 1

333 1 2 3030

P 3 203 3

3 3

'3

3

3 3

APPENDIX A

SUMMARY OF COMPILER AND RUN-TIME DIRECTIVES

APPENDIX B

COMPILE TIME ERRORS

APPENDIX C

RUN TIME ERRORS

APPENDIX D

OPERATING SYSTEM ERRORS

APPENDIX E

INTERACTIVE DEBUG COMMAND SUMMARY

APPENDIX F

CP/M DISK FILES

APPENDIX H
EXAMPLE CONFIGURATION
SPECIFYING TAB STOP MODIFICATION
APPENDIX J
EXAMPLE CONFIGURATION
SPECIFYING USER SUBROUTINES
APPENDIX K

EXAMPLE CONFIGURATION IN WHICH
NO CRT TAILORING IS PERFORMED

2-10

APPENDIX M

EXAMPLE RUN TIME SUBROUTINES

APPENDIX N

EXAMPLE USE OF RUN TIME SUBROUTINES

APPENDIX P

CONSTRAINTS

2 - 11

ooy

e

ey

poe
sl

ey

3

33 % -3

32«3 33 3 .3 .1

‘3 3 3 3

3

13

TABLES
Title

Issue Disk Contents

Excluded Combinations of Directives
Optional Modules by Load Parameter
CRT Cursor Control Keys

ILLUSTRATIONS
Title
Program Development Cycle
Run Time System Memory Layout
Sample CALL Tree Structure

Memory Layout Using Segmentation and
Inter-Program Communication

2-12

Page

2-14
2-25
2-30
2-35

NOFLAG

No flags are listed by the compiler. This is the default if the FLAG
directive is ommitted.

RESEQ

If specified, the compiler generates COBOL sequence numbers, re-numbering
each line in increments cf 10. The default is that sequence numbers are
ignored and used for documentation purposes only, i.e., NORESEQ.

NOINT

No intermediate code file is output. The compiler 1s in effect used for
syntax checking only. The default is that intermediate code is output,
i.e., INT (sourcefile.INT).

NOLIST

No list file 1is produced; used for fast compilation of '"clean" programs.
The default is a full list, i.e., LIST (sourcefile.LST).

COPYLIST

The contents of the file(s) nominated in COPY statements are listed. The
list file page headings will contain the name of any COPY file open at the
time a page heading is output. The default is NOCOPYLIST.

NOFORM

No form feed or page headings are to be output by the Compiler in the list
file. The default is headings are output, i.e., FORM(60).

ERRLIST

The listing is limited to those COBOL lines containing any syntax errors or
flags together with the associated error message(s). The default 1is
NOERRLIST.

INT (external-file-name)

Specifies the file to which the intermediate code {s to be directed. The.

default is: source-file.INT.
LIST (external-file-name)

Specifies the file to which the listing is to be directed (this may be a
printing device, ie. console or printer or a disk file) The default is:

source-file.LST
For list to console use: LIST(CON:) or LIST (:CO:)
For list to line printer use: LIST(LST:) or LIST (:LP:)

2 -22

L

L]

[

3

23 3 3

3

e

frtil.

(G

ANIM

The ANIM directive compiles the program in such a way as to enable run-time
debugging with the ANIMATOR product and should not be specified if you do
not have this product, See Chapter 7. Note that the compiler produces
three new ANIMATOR files for your program in addition to the intermediate
code file (.INT) and any listing (.LST) with the extensions .SDB, .SCP and
.DDC respectively. Default is obviously NOANIM. This directive is only for
use when compiling programs for later debugging with the ANIMATOR product.

The remaining compiler directives are only for use when compiling programs
to run under the FILESHARE file management system product.

FILESHARE

This directive informs the compiler that the program being compiled contains
extended syntax statements that can be used only with the optional FILESHARE
product. (See the FILESHARE Users Guide). Without the directive, FILESHARE
syntax will be flagged as being in error, and further FILESHARE compile
directives (see below) will not be accepted.

RESTRICT (organization)

Categorises all files with the organization specified - "“INDEXED" or
"RELATIVE" - declared within the program being compiled, as being of type
Exclusive access. The default file type is Unrestricted, but not
Committable, (See FILESHARE above).

COMMIT (organization)

Categorises all files with the organization specified - "INDEXED" or
"RELATIVE" - declared within the program being compiled, as being of type
Committable, but not Resettable, (See FILESHARE above).

DERESTRICT (organization)

Categorises all files with the organization specified - "INDEXED" or
"RELATIVE" - declared within the program being compiled, as being of type
Unrestricted, but not Committable, (See FILESHARE above).

NOTE - A program containing FILESHARE syntax statements may be compiled
using the FILESHARE directive and will run and can be tested in
isolation using a single-user RTS.

EXCLUDED COMBINATIONS

Certain of these directives may not be used in combination. Table 2-1 shows
the directives that are excluded if the directive shown adjacent in the left
hand column is specified

2 -2

()

3

5

3

I NENE R

S REE NED NS NNE DR IS NS DD BRN BNE BRE BN B

i3

Table 2-1, Excluded Combinations of Directives

DIRECTIVE EXCLUDED DIRECTIVES

NOLIST LIST
NOFORM
FORM
RESEQ
COPYLIST
ERRLIST
NOREF

ERRLIST RESEQ
COPYLIST
NOREF

SUMMARY INFORMATION ON CRT

The general format of the basic command line is:

COBOL filename [directives]<<
and the Compiler will reply with:

#*CIS COBOL V4.5 COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD.
where 4 is the version number and 5 is the release number.
Each directive 1s then acknowledged by the Compiler on a separate line, and
is either ACCEPTED or REJECTED. After all the directives have been
acknowledged, the Compiler opens its files and starts to compile. At this
point it will display the message:

filename COMPILING
If any file fails to open correctly, the Compiler will display:

filename FAILED TO OPEN

The compilation will be aborted, returning control to the operating system.

2 -25

When the compilation is complete the Compiler displays the message:

**ERRORS=nnnnn DATA=nnnnn CODE=nnnnn DICT=mmmmm:nnnon/ppppp GSA FLAGS=nnnnn

where:

ERRORS -

DATA

CODE -

DICT -

GSA FLAGS

LISTING FORMATS
The general layout of
**CLS COBOL V4.5

sk
%% OPTION SELECTED :

denotes the number of errors
found

denotes the size of RAM required i.e.
data area of the generated program

denotes the size of ROM required i.e.
code area of the generated
program

mmmmm denotes the number of bytes used in the data
dictionary.

anonn denotes the number of bytes remaining
in the data dictionary

ppppp denotes the total number of bytes in the
data dictionary

denotes the number of compiler validation flags
encountered or 'OFF' if the directive NOFLAG was
entered or assumed.

the list file is as follows:

filename PAGE: nnon

*% - optional directives as entered in compile command line -

dede
statement 1 HHHH
statement n HHHH
**CLS COBOL V4.5 REVISION n URN AA/0300/BA

**COMPILER COPYRIGHT (C) 1978, 1982 MICRO FOCUS LTD

*%k

**ERRORS=nnnnn DATA=nnnnn CODE=nnnnn DICT=mmmmm:nnnnn/ppppp GSA FLAGS=nnnnn

END OF LIST

2-26

L S

1

1

s

o

AT

L]

=

CHAINING

The CIS COBOL program chaining feature can be used to replace an application
or utility in memory in its entirety. A CALL is made to the supplied CHAIN
utility program which allows another linked program not requiring parameters
to bg¢ loaded and entered. There is no return to the calling program. The
CHAIN routine is described later in this Chapter.

MEMORY LAYOUT

In order to consider the use of overlaying (Segmentation) and/or
multilanguage calling of other programs together, it is useful to consider
the memory layout. Assuming that both features are in use Figure 4-2 shows
the memory layout.

RTS

Called assembler routines
area allocated by CONFIG

Main Permanent Segment/s
COBOL
program Overlay Area

(Independent segment/s)

Called Permanent Segment/s
COBOL
program 1 Overlay Area (if any)

(Independent Segment/s)

Called Permanent Segment/s
COBOL
program 2 Overlay area (if any)

(Independent Segment/s)

etCoesen

Available memory

Figure 4=~2, Memory Layout using Segmentation and Inter-Program Communication.

2 - 46

3

PARAMETER PASSING TO RUN-TIME SUBROUTINES
Parameter passing in run time subroutines is as follows:

1. If one parameter is passed, its address will be found in register pair
B,C.

2. If two parameters are passed, the first parameter address will be
passed in B,C the second address in D,E.

3. If three or more are passed, the last two will be passed as in 2 above,
and the rest will be stacked, in such a way that the first parameter
will be the last to be POPped from the stack.

4. The return address to the Run Time System will be found at the top of
the stack on entry to the CALL code.

5. The user need not clear all parameters from the stack, since this will
be automatically reset by the Run Time System, provided the address on
the top of the stack on entry is returned to.

6. If register B,C and/or D,E are not used for parameter passing, they
will contain 'FFFF' on entry to the CALL code.

7. After the last parameter has been POPped from the stack, the next POP
will return the value FFFF,.

8. If only one parameter is passed the entry following the return address
on the stack will be FFFF as will registers D,E.

9. If no parameters are passed, then conditions will be as in 8 above with
B,C set to FFFF also.

The use of terminator FFFF allows the user programmer to pass a variable
number of parameters to the subroutine.

PLACEMENT OF THE SUBROUTINES IN THE SUBROUTINES AREA

The subroutines will typically be written completely independently of the
COBOL program in any language which generates microprocessor order code.
They will be assembled or compiled into absolute modules located at the
addresses specified in the table. at the front of the subroutine area.
During development these addresses will typically change with each new
compilation, as the sizes of the various subroutines change.

The subroutine object code will then be patched into the subroutine area
using the CP/M DDT utility.

This utility is described in detail in the CP/M Manual describing DDT.

2 - 52

[

[

72 3 3 3 1%

i 3 8 9 3 9 9 3 3 14

4 3 9 3 3 3

The CHAIN Subroutine

The CHAIN call allows another linked CLS COBOL program or any program not

requiring parameters to be loaded and entered. There is no return to the
calling program.

A parameter list of one variable must be passed with CALL CHAIN:
* The data-name containing the file-name of the program to chain to.
The file-name must be terminated by at least one space character.

EXAMPILE :

WORKING~-STORAGE SECTION.

.
.

03 NEXT-PROG PIC X(10) VALUE "PRIN2.COM ".

03 CHAIN PIC X(3) VALUE "260".
PROCEDURE DIVISION.

.

CALL CHAIN USING NEXT-PROG.

2 - 55

The PEEK Subroutine

The PEEK call allows an absolute address location to be examined from a user
program, The CALL returns into the user area a copy of the 8 bit value at
the absolute address.

A parameter 'list of two variables must be passed with CALL PEEK:

* The five~character data-name containing the absolute address
to be read from,

* The one-character data-name where the value is to be read to.
EXAMPLE:

WORKING-STORAGE SECTION.

.

03 PEEK PIC X(3) VALUE "261".

03 ADDRESS PIC 9(5) VALUE 1234 .

03 DATA-VAL PIC X.

PROCEDURE DIVISION.

CALL PEEK USING ADDRESS, DATA-VAL.

2 - 56

1}

]

If the modules established by CONFIG as overloadable (based on user replies
during the CONFIG run) have a total contiguous length exceeding that of the
assembler routines, the routines can reside in this free space; otherwise
they must be appended at the high-address end of the RTS.

It can therefore be seen that the total length of the RTS, once assembler
subroutines are included, may or may not have increased depending on the two
factors above.

The diagram below gives an idea of the 1length (in decimal) of the RTS
overloadable modules in CIS V4.5,

RUN TIME DEBUG = 2600 bytes

These modules may ANIMATOR (RESIDENT) j-e= 1400 bytes overloadable
not be overloaded RTS modules
INDEXED 4= 7300 bytes
SEQUENTIAL

<@ 0 - low end of memory

From the above diagram it can be seen that the maximum length of assembler
subroutines that can be embedded in the RTS is of the order of 11,000
bytes - only possible in the case where all of the three modules DEBUG,

ANIMATOR, INDEXED are specified as excludable.

Note that the size of the RTS will NEVER decrease as a result of assembler
subroutine inclusion, because of the fixed module at the top of the RTS.

2 -67

)

¥ 3)

y ¥ 3 3) 3

!

1

GENERATED PROGRAMS

The FORMS-2 Utility generates a COBOL program which maintains data stored in
the created forms in an indexed sequential file automatically, with
automatic generation of file names from a user-supplied base name. These
files comply with the standards in use by the operating system under which
CIS COBOL is being used.

CIS COBOL PROGRAMMING FOR FORMS~2 GENERATED FILES
No special programming is required to use FORMS-2 generated program files in
a CIS COBOL application program. The files are processed as normal indexed
sequential files. It is worth noting that the files can be fully maintained
interactively by wuse of only the FORMS-2 Utility. In addition to
establishing or deleting files, this includes the following facilities:

* Insertion of new records

* Insertion of the same data in records with different keys

* Display of any selected record/s (Full inquiry facility)

* Insertion or amendment of records dependent on their key

* Deletion of records

* Read and display next record or a message if end of file detected
* Terminate run

Details of the FORMS-2 Indexed Sequential File handling facilities are given
in the FORMS-2 Utility Program Users Guide.

2 - 69

Y

3

tEE R N T I IS I DR N I R RS D NEE BN BRN BN

If $ANIM.V45 is not present on the logged-in drive, a message is displayed
on the VDU and ANIMATOR is permanently switched off. If any of the other
files is not_ present, then the message

Animation of root programs inhibited - missing files
is displayed and ANIMATOR is not activated for the root program, but still
may be invoked for called subprograms.

NOTE:
Deletion/Renaming of files (except SANIM.V45) can be used to switch off
animation for selected programs within a suite. This facility can be
used as an alternative to recompiling without the ANIM switch,

EXAMPLES :
The directive
RUN +A PROG.INT<<

loads and runs the program PROG with animation. The program must have
been compiled with ANIM and all necessary files (see LOAD Parameter in
Chapter 3) must be present. Also, the RTS must be capable of
initiating ANIMATOR (i.e. this facility is available and has not been
omitted at configuration time - see Chapter 5).

The directive
RUN +4 = PROG.INT<<

is invalid, and results in the message

"=" and "+A" not allowed in conjunction
being displayed on the screen, followed immediately by a return to
CP/M.

The directive
RUN +A +I = PROG.INT<<

is invalid (only 1 load parameter allowed) and results in the message
Command line processing error

being displayed on the screen, followed immediately by a return to

CP/M.

MEMORY MANAGEMENT CONSIDERATIONS

The size of the RTS with ANIMATOR included is larger by 1920 (decimal)
bytes, than it will be when not included. Additionally, the program
SANIM.V45 will be loaded as and when it is necessary to animate a program,
and will remain in memory thereafter. The diagram that follows gives an

idea of the memory usage by CIS systems components when running with
ANIMATOR:

2-72

77
78
79

81
82
83
84
85
86
87
88
89

90

91
92

Illegal combination ORGANIZATION/ACCESS/KEY
Unrecognised clause in SELECT statement

RERUM clause contains syntax error

SAME AREA clause contains syntax error

File-name missing or illegal

'DATA DIVISION' missirg

'PROCEDURE DIVISION' missing or unknown statement
'EXCLUSIVE', 'AUTOMATIC' or 'MANUAL' missing
Non-exclusive lock mode specified for restricted
file

'DIVISION' missing

'SECTION' missing

File-name not specified in SELECT statement
RFECORD SIZE integer missing

Illegal level number or level Ol required

FD qualification contains syntax error
'"WORKING~STORAGE' missing

'PROCEDURE DIVISION' missing or unknown statement
Unrecognized clause in Data Description or
previous '.' missing

Incompatible clauses in Data Description

BLANK is illegal with non-numeric data-item
PICTURE clause too long

VALUE with non-elementary item, wrong data-type or
value truncated

VALUE clause in error or illegal for PICTURE type
FILLER/SYNCHRONIZED/JUSTIFIED/BLANK clause for
non-elementary item

Preceding item at this level has 0 or more than
8192 bytes

REDEFINES of different levels or unequal field
lengths.

Data Division exceeds 32K and data-item has
address above 7FFF

Data Description clause inappropriate or repeated
REDEFINES data-name not declared

USAGE must be COMP, DISPLAY or INDEX

SIGN must be LEADING or TRAILING

SYNCHRONIZED must be LEFT or RIGHT

JUSTIFIED must be RIGHT

BLANK must be ZERO

OCCURS must be numeric, non-zero and unsigned
VALUE must be a literal, numeric literal or
figurative constant

PICTURE string has illegal precedence or illegal
character

INDEXED data~name missing or already declared
Numeric edited PICTURE string is too large

2-~-79

L]

Lo

gz

L1

3 » 3) 13

3 3 3 3 3

13 12

Enviromment Division

In the FILE~CONTROL paragraph the general format of the SELECT and ASSIGN TO
statements is as follows:

General Format

SELECT file-name

ASSIGN TO external-file-name—litera%
file~identifier
[external-file-name—literau
* (file-identifier
Parameters
filename -~ Can be any user~defined
CIS COBOL word (see User
Defined COBOL Words in Chapter
2)
file-identifier - See Run-Time File Assignment
later in this Appendix
external-file-name-literal - Is a standard CP/M file name of
the following general format:
z[drive] filename .[extension]g
device
where:
drive - The pre-established CP/M disk drive identifier A:
through P: 1
device - Devices other than disk as follows:
LPT: PUN: .
LST:} - Line Printer $TP: Punch Device
:LP: sHP: - High Speed Punch
:CI: = Keyboard Input :RDR: .
:CC: = Screen Output :TR: Reader Device
CON: = Console I~0 :HR: - High Speed Reader
:tBB: - Byte Bucket
filename - One through eight alphabetic or numeric characters (no
spaces)
extension - One through three alphabetic or numeric characters (no
spaces)
. The availability of any of these devices is dependent upon the

availability of the driver software for the device in your version

of CP/M.

2 - 88

]

oy

31 3 11

X

Normally the space occupied per record is the same as the program record
length and data of any type may be held on the file: this does not however
apply if WRITES are done using BEFORE or AFTER ADVANCING, as extra control
characters are inserted and the data cannot then be read back correctly.

The RTS writes a trailer block to an output file to mark the precise
position of the end of data, and expects to find one on an input file.
There are no limits on file size beyond those imposed by the operating
system and/or hardware.

LINE SEQUENTIAL

Line sequential file format is intended to cater for text (ASCII) files as
generated by editors and other similar utilities. This is the only type of
CIS COBOL file format in which variable length records are supported: the
two-bvyte combination ODOAH (carriage return, line feed) is used as a record
delimiter, and any single byte lAH (control-Z) as an unconditional file
terminator. On input the CR-LF is removed and the record area padded out
with spaces as necessary: on output any trailing spaces in the program's
record area are ignored. Use of ADVANCING phrases other than BEFORE 1
causes the output of additional device control characters. A file created
in this way can still be read by a program, but the additional control
characters are not filtered out and will appear in the record area.

RELATIVE

Relative file organization provides a means of accessing data randomly by
specifying its position in the file. Records are of fixed length, the
length used being that of the longest record defined in the program's FD.
To designate whether or not a record logically exists, two bytes are added
to the end of each record: these contain ODOAH if the record logically
exists on the file and 0000H if it does not. The total length of a file is
determined by the highest relative record number used; CIS COBOL imposes a
limit of 65535 on this value independently of operating system and/or
hardware constraints. Data of any type may be held on the file; the RTS
uses a trailer block to determine the precise position of the end of data.

INDEXED SEQUENTIAL

An indexed sequential (ISAM) file occupies two CP/M files on disk: both are
in a relative file format, one containing the data and the other all
indexing and free space information - the index (.IDX) file.

The name for the index file is derived from the name supplied for the ISAM
file by substituting the extemsion '.IDX' in place of any supplied in the
ISAM file name. The name for the Data file is the same as that supplied for
the ISAM file. This means that different ISAM files cannot be distinguished
purely by a change in the file-name extension and also that it is advisable
to refrain from using the extension '.IDX' in other contexts.

e g. 'CLOCK.FLE' as an ISAM file-name produces an index 'CLOCK.IDX' in
addition to the CLOCK.FLE data file

2 -92

!

1

3 » 3 F 3 OB OV OR R O}OZD

r 1

B

'3 i3

|9

\

13 3

8 .3 3

3

'
t

|

N |

§

3

391

'
{
.

13

L]
]
b

i |

i

FILEMARK UTILITY PROGRAM

The FILEMARK Utility program is used to write the trailer block that is
required by CIS COBOL, in situations where it is not present. The program
writes the trailer block on to the end of any specified file, without
checking the internal format of that file. It is possible, therefore, to
append a CIS COBOL trailer block to any CP/M file.

The program checks whether a CIS COBOL trailer block is already present, and
if so, advises the operator by a displayed message (see ERROR CONDITIONS
below), otherwise it appends a trailer block. FILEMARK can therefore be
used to check for the presence of a trailer block.

OPERATING INSTRUCTIONS

Loading

FILEMARK is supplied as a directly loadable program to run under CP/M. It
is loaded and run as follows:

FILEMARK [drive:] filename <<

where: drive is a CP/M disk drive identifier i.e. A thru P.
filename is a standard CP/M filename in the format:
name.ext
Running

The FILEMARK program is interactive in operation and displays messages
during successful running as follows:

FILE FOUND; PROCESS BEGUN
CIS COBOL EOF RECORD SUCCESSFULLY ADDED TO FILE
FILE CLOSED; PROCESSING SUCCESSFULLY COMPLETED

Error Conditions

Any error condition that occurs during running of FILEMARK is conveyed to
the user by a self-explanatory wessage. Error messages are as follows:

FILE NOT FOUND, RUN ABANDONED

indicates that the specified filename does not exist on the specified
drive.

FILE 1S MAX. SIZE THUS NO FURTHER RECORDS CAN BE ADDED; RUN ABANDONED
indicates that the addition of a trailer record would cause the file to
exceed the maximum size allowed by CP/M.

ERROR DURING DISK READ; RUN ABANDONED
indicates that a read failure has occurred during the scan of the file.

2 =95

F T i rfYy vy rrrrfrrrcorrrrm

3?2 0 3% 3030809 o811 o803 %03 3

P 3 8 3 3 3 3

CHAPTER 3

OPERATING COMMANDS

When a program is loaded for animation, as described in Chapter 2, the first
screenful of procedural code is displayed with the cursor positioned on the
first executable statement. Execution will not commence until initiated by
a command as described in this Chapter.

At the bottom of the screen is a delimiting line of hyphens fol lowed by the
main command menu:-

B(rk-pnts) D(isp) E(xec) F(ind) L(evel) M(on) P(-c) Q(uery) S(creen) U(ser)

Commands are entered by simply pressing the appropriate key. If an invalid
entry is made at any time ANIMATOR indicates this by briefly replacing the
prompt line with a line of hash (#) signs and "bleeping".

Several of the main commands merely serve to invoke subordinate menus of
more detailed commands. For convenience some of the more commonly used of
these subordinate commands can also be entered directly whilst the main
prompt line is displayed (see detailed descriptions). After execution of a
subordinate command the main prompt line is redisplayed.

Some of the commands require that the cursor is first moved to point to the-
appropriate position in the displayed source code. The main prompt line
shown above is displayed whenever execution is suspended. Whilst this

prompt line is displayed the cursor can be moved over the screen using the
normal cursor control keys. For details of these (and how to change them)
refer to the CIS COBOL Operating Guide.

Note that with ANIMATOR the back field and forward field function keys ace

used to move the cursor up and down within a screen column. In addition
RETURN will move the cursor to the start of the next line.

DETAILED COMMAND DESCRIPTIONS

The main commands fall into 4 broad categories:
- Source code “window" manipulation (S,F)

- Execution and animation control (B,E,L,P)
- Examination and amendment of data (D,Q,M)
- User screen display (U)

These commands may only be entered when the main prompt line is displayed.

3 - 14

SOURCE CODE WINDOW MANIPULATION

ANIMATOR uses the screen as a window into the source code text. These
commands allow you to reposition the source code window to any point within
the source COBOL program. Note that this in itself does not affect the
point at which execution will be resumed.

ANIMATOR automatically displays resequenced line numbers against the source
text. These will be the same as those appearing on the compilation listing
if the directives RESEQ and COPYLIST (if appropriate) were specified to the
compiler.

The S(creen) Command

Press S and the following subordinate menu is 315played:
SCREEN - N(ext) P(revious) T(op) E(nd) V(iew) H(alf) F(ull) =/+/-

These commands reposition the window to display a different part of the
source text.

Press the appropriate key where:

N displays Next screen from source text. Note that this overlaps the
current screen by two lines.

P displays Previous screen from source text.

T displays screen at Top of source text.

E displays screen at End of source text.

v repositions window so that the source line indicated by the cursor is
on the third line. Note: the cursor must be positioned before

pressing S.

H Splits screen in Half (ie into two windows) with a dividing line of
hyphens. The lower window is positioned to show the top of source
text. Note: Subsequent screen commands operate on the window in which
the cursor is positioned.

F restores Full screen display (single window).

=n repositions the window such that the nth source line is aligned at the
third screen line. Note: n is equivalent to the displayed line number
omitting the trailing zero.

+n moves the window forward n lines.

-n moves the window back n lines.

Note: =, +, = all position the cursor for entry of a numeric
quantity followed by RETURN.

3-15

[l

I

3

2 2

P 333 0 0309 o0B® ORP T OPeprdoo3clododoql ol oronorodond

There is one special case of the screen command. If there is a split screen
display and -the cursor is positioned on the dividing line of hyphens, then
when S is pressed the following subordinate menu is displayed:

SCREEN DIVIDER - U(p) D(own)
These commands allow the relative size of the two windows to be altered.

U moves the screen divider Up one line.

D moves the screen divider Down one line.

The F(ind) Command

This command instructs ANIMATOR to search forward from the current cursor
position through the source text for a specified string of characters. If
found the screen window is positioned with the line containing this string
as the third screen line and the cursor is positioned following the string.
If not found the main screen display remaing unchanged, but ANIMATOR
indicates the failure by bleeping and restoring the main prompt line.

Press F and the cursor is positioned for entry of:

Either

"string” followed by RETURN

or

“"string"M followed by RETURN

where:
- any character not forming part of the string can be used in place of ".

- string is any sequence of characters (including spaces); it need not be
a complete word.

- the optional M instructs ANIMATOR to only search the main source file
and not any library (COPY) files.

Note:

ANIMATOR only examines columms 7 - 72 of the source text, the displayed
line numbers are ignored.

3-16

i3 3 3

3 13

3 3

333 3 3 3 '3

3 3«33y 303 3 03 0% 3

S

skips a single COBOL statement, without executing it, and moves the
cursor to the next statement.

Note: If the final statement of a PERFORMed paragraph is skipped,

control does not exit from the PERFORM but passes to the next statement
in the source code.

Executes without animation up to the next IF statement, at which point
execution halts and the cursor is repositioned at this IF statement.

Initiates animdted execution. As each statement is executed the cursor
is moved to the next statement in the source code. The speed of
animated execution can be varied by typing a digit from 1l to 9
(1 = slowest, 9 = fastest). The speed may also be entered before
initiating execution. Execution proceeds until halted as described
below.

Initiates execution without animation (Zooms). Upon reaching the first
DISPLAY UPON CRT or ACCEPT FROM CRT the user screen is displayed,

replacing the source code, and remains on the screen until execution is
halted as described below.

Stops execution after displaying the current user screen.

After initiation by one of the above commands, execution proceeds as
described above, unless it is halted in one of the following ways:

l.

2.

If the space-bar is pressed execution is immediately halted.

If a previously set break-point is reached execution is automatically
halted.

If execution is about to "“drop through" the end of the program the
following prompt is displayed:

WARNING - Next instruction is implied STOP RUN - S{top run) C(ontinue)
Press any key to restore the prompt line and regain control. If
execution is restarted without first resetting the program counter the
program will terminate; see the P(-C) command

If a run-time error occurs the following prompt is displayed:

RTS ERROR: nnn - S(top) C(ontinue)

Press S to stop, or C to regain control.

Error numbers are detailed in the CIS COBOL Operating Guide.

3 ~-18

The L(evel) Command

Animation normally traces execution into any level of nested PERFORM. This
command allows a "threshold" level to be set at any level of nesting, such
that any PERFORM's subordinate to this level are treated as a single
statement for animation purposes, i.e. the cursor will not be moved into
PERFORMed procedures below the threshold level.

Press L and the following subordinate menu is displayed:-
PERFORM LEVEL - S(et) U(nset) E(xit)

Press the appropriate key, where:

S sets the threshold level at the current level
u unsets the threshold level, restoring animation at all levels.
E completes execution of the current PERFORM without animation,

repositioning the cursor to the statemeat following the PERFORM, and
then sets the threshold level at this point.

The P(-C) Program Counter Command

This command provides facilities to ascertain the point at which execution
will start (or resume), or to change this point. To change the restart
point 1t is first necessary to place the cursor at the required position.

Press P and the following subordinate menu is displayed:

PROGRAM COUNTER - W(here) R(eset)

Press the appropriate key, where:

W repositions the screen window as necessary and positions the cursor at
the next statement to be executed. This is useful as a check after use
of the source screen manipulation commands, but note that it is unot
necessary since ANIMATOR will resume execution at the correct position

unless the following command is used.

This command may also be entered against the main prompt line (without
the preceding P).

R resets the execution start point (program counter) to the current

cursor position. Before pressing P the cursor should be positioned on
the first character of an executable statement (ie a COBOL verb).

3-19

oy

L)

¥} 1)

3

3)

3 3

3

3

The M(onitor) Command

This command enables automatically repeated display of a single specified
data item (without amendment).

Press M and the following subordinate menu is displayed.

MONITOR - S(et) U(nset) N(ame)

Press the appropriate key, where:

S sets the monitor on the data item referenced by the cursor. The cursor

must be moved to point to any occurrence of the data-name before
pressing M.

U unsets the monitor.

N positions the cursor for entry of the required data-name followed by
RETURN.

The monitored item is redisplayed after each animation "step" - eg after

each statement if in "GO" wmode.

USER SCREEN DISPLAY

During animation any ANSI format ACCEPT/DISPLAY statements are diverted to
the bottom of the screen so that they do not interfere with ANIMATOR's use
of the screen.

This approach is not possible for the ACCEPT FROM CRT and DISPLAY UPON CRT
extensions for full screen interaction. Therefore all such ACCEPT/DISPLAY
screen data is buffered internally.

This "user screen" automatically replaces the source code window display
when an ACCEPT is executed, so that the user can interact with the screen in
the normal way.

Additionally the user screen can be examined by means of the U(ser) command.

The U(ser) Command

Press U and the user screen is displayed, replacing the source code window
display. If the Z key is pressed at this point, execution without animation
(Zoom) is initiated, and the user screen remains on display. Otherwise, if
any other key is pressed, the display reverts to the source code.

3 - 21

3

¥ 1 32 2

3

L)

S =~ Stops execution after displaying the current user screen.

The Find command searches from the current cursor position through the
source text for a specified string of characters.

The Level command allows a "threshold" level to be set at any level of

nested PERFORM such that any PERFORM statements at this level are

treated as a single statement for Animation purposes, i.e., the cursor

will not be moved into PERFORMed procedures below threshold level.

S - Sets the threshold at the current level.

U -~ Unsets the threshold level and restores Animation at all levels.

E -~ Completes the current PERFORM without further Animation, then
sets the threshold at the level of the statement immediately
suceeding the current PERFORM statement.

The Monitor command enables automatic repeated display of a single
specified data-item (without amendment) during program execution.

S - Sets the Monitor on the data-item at the current cursor
position.

U -~ Unsets the Monitor.

N - Positions the cursor for operator entry of the Name of the
data-item to be Monitored.

The program—counter command provides facilities to ascertain the point
at which execution will start (or resume), or to alter this point. On
entry, the P command displays an option menu as follows:

W - Where - repositions the cursor at the next statemeant to be
executed.

R - Resets the execution start point to the current cursor position.

The Query command allows display and/or amendment of the data-item
pointed at by the cursor when Q is entered.

The Screen command repositions the screen window to display a
different part of the source text as follows:

N - displays Next screen from source text.

P - Displays Previous screen from source text.

3-23

y 3 2 %)

e

13 {3 313 114

,
;
d

4 9 1 13

4

N |

1.3 3

4 % .3 % 33

X

"
i

3

!
i
)

3

FORMS-2 VALIDATION

Before using your copy of FORMS-2, you should first validate the main files
on your disk by performing the simple run below:

l. Boot the system up, and load FORMS-2 by entering the command:
FORMS2<<

2. The program will run, and will come up with the first screen, thus:

THITIALISATION FHRSE

FERT FARMETERS:
[mTR—RﬁlE L FILE-HAKE (4-F alphanmeric cherzcters)

KT lines (¢¢ or ¢ or £43

(ARST currency

(rrgr vl

when coupleie

Press RETURN when complete.

A six-character base for file-names and data-names is requested followed by
three other questions. You need only key DEMO followed by the RETURN key to
accept the defaults displayed.

4 - 12

34

4.

FORMS-2 displays Screen I02 to request the output file option type and

device/directory prefix.

Fomnse ¥1.3

FILES T0 BE CREATED:
FILE CONBIMATIONS

IHITIALISATION PHASE

14

DEVICE/DIRECTORY PREFIX (B-48 Chars) [

Press RETURK vhen cosplete

Key F then RETURN.

FORMS-2 displays Screen WOl to request the Screen Type option, thus:

FoRmse ¥1.3

VORK SCREEN SELECTION:
SUREEN TYPE

Fixed Text allous:
Variable Data allows:

Press RETURN when cosplete

STREEN W1

(R = Fixed text on clear screen)

(B = Fixed text on last screen)

(C = Yariable data redefines last screen)
(D = Yariable data without redefinition)
(1 = Cosplete this FORKS run)

A1l characters
X or Y to define alphanumeric fields

9 or § to define numeric fields
edit chars to define numeric edit fields

Note the default "A" and press the RETURN key.

4 - 13

| 3

3

{3 (8!

|

4

W

3

3

'3 838 3 %

T IS IR BN BN DS IR DR

X BRE |

FORMS-2 displays a blank screen. You are currently in Edit Mode, and
should be able to position the cursor at any point on the screen. Use
the cursor control keys and the normal character keys to set up the
following text on the screen:

ar [1 W

_)

Finally press the RETURN key.

FORMS-2 puts "__" in the top left of the screen indicating that you are
now in Command Mode. Enter ? and then press the RETURN key.

FORMS-2 displays screen HOl, thus:

HELP SCREEX SUREEN 1ot

SPEE = Protess the work screen
= Re-enter EDIT mode .
isplay the next HELP screen
? isplay the nth HELP screen
€ = Reenter ¥RK PHASE screen selection
| = Terainate FORKS run issediately
)t(= Position commands al EDIT mode cursor

= Indicate Index Forn's data area start
RITE: SPACE i< the comsand to process the EDIT mode screen

RIF opticn L1 = Re-enter EDIT mode)
= Display next HELP screen)
I = Abandon FORXSZ run imsediately)

Press RETURH whien complete

Enter ? then RETURN.

4 - 14

8.

9.

FORMS-2 displays screen HO2, thus:

FORSe V1.3
IHIPILATION CORMMD SURKARY:

HELP option

Press RETURH when cosplete

Enter ? then RETURN.

FORMS-2 displays screen HO3,

FORNS2 V1.3

FROGRUDNING CONHD SURKARY

HELP option L1

Press RETURH when cosplet

A

Enter ? then RETURN.

ST
(1

HELP SCREEN STREEN e

F = Invoke FUREGR(IUH[IIBRBKGRUMJ wanipulation
Fx = Invoke FORE option *x*

0 =Turn on autosatic WORK screen preparation
0f = Turn off autosatic WORK screen preparation
Cn = Insert n spaces at cursor position

Dn = Delete n chars at cursor position

In = Insert n blank lines before cursor line
En = Delete n lines including cursor line

fin = Qvervrite n lines vith data of cursor line
Un = Move cursor up n lines

Vn = Move cursor down n lines

Re-enter EDIT node)
Display next HELP screen)
fihandon FORKSZ run 1|nd1¢te}q)

thus:

HELP SEREE STREEN W3

G = Give datanames screen coordinates suffix

61 = Give datananes sequential nusber suffix

Jn = Allov up to n consec. spaces in fixed text
K=In terYret X' 35 'space

S = Cancel previous Sn comaand

51 = Inhibit DOS & CHK output at next processing
52 = Inhibit Snn output at next processing

53 = Proapt for Snn file-nase at mext processing
59 = Line edit DOS output at next processing

P = Display cursor position coordinates

= Re-enter EDIT node)
f Display next HELP screen)

(I = fbandon FORNS? run imsediately)

(3

4 - 15

31 3

'3 3

?

3

11.

12.

13.

10. FORMS-2 displays screen HO4, thus:

HELP option L[]

Press RETIRR when complete

Simply press RETURN.

FORMS-2 redisplays the fixed text that you keyed in at step 5.

RETURN.

FORMS-2 puts "__ " in the top left of the screen.

RETURN.

SUREEN

0511100 Cursor 1o current vindow start

1art vindow al cursor line

nd window at cursor lipe .

tart vindow at cursor Jines no delin's

nd vindow 3t cursor line, no delin's
lSP]N stan vindov delimiters

isplay end vindov delimiters

e-display data overwritten by starl delu 3
e-display data overvritten by end de]in's
= Position curser to current vindow

Re-enter EDIT pode)
Display next KELP screen)
fbandon FORNS? run imsediately)

FORMS-2 displays screen W02, thus:

Foexse v1.3

FOREGROUMD/BACKEROUMD OPERATEONS

BT

FILE-HeMf [
Press RETIH when coaplete

Enter A then RETURN.

[]

HOTE:

VORK PHASE

A = Re-enter ELIT NOUE)

B = Clear FORFCROUHD)

L = Clear BACKCROUND)

[= Merge BACKROUND inte FORFCRUGM)
€ = Kerge FOREGROUND intc RACKERGBD)
E Merge screen inage into FORECKIAND)
#

]

(
(
(
(
E
(6 = Merge ccreen inage inte FACKCROUMD)
E [isplay FORECRULEE)

(

ay BALKCROLGD)
J y sCreen 1age)

(R4 T8 J displey until KETURN pressed)

1
AFEEE Jenly)

4 - 16

Press

Enter F then press

i3 8 1411

|
{

f
1
i

3

3 3 7 1 1 73

1 i1

{

IS I BT B B B

i3

Fx

ol

0 or 00

Specifies Required Foreground/Background Option,

x is the option code as contained in screen WP02 above. The
specified option is executed and control returned to Edit
Mode without display of the WPO2 screen.

"Switch Off" Automatic Background/Foreground Preparation.

The Background/Foreground preparation sequence is described
under BACKGROUND/FOREGROUND earlier in this Chapter. This
command 1s used to prevent the current Foreground being
merged into the Background or either area being cleared for
the next phase.

The Ol command remains effective until the command O
(described below) is entered.

Reset Background/Foreground Preparation.

The Background/Foreground preparation sequence is reset to
automatic (starting at the beginning of the next Work Phase).

Note:

The Q command has a similar effect (beginning at the
next phase).

The commands C, D, I, K and A are editing commands and are controlled by the
position of the cursor at the time Command Mode is entered (i.e. the current
cursor position) and operate only on the Foreground data. Background data
remains in the same position.

Cn

Dn

In

Kn

Insert Spaces

Inserts n (1-9) spaces prior to the character at the current
cursor position. Only the current line is affected.

Delete Characters

Deletes m (1-9) characters including the character at the
current cursor position. Only the current line is affected.

Insert Blank Lines

Inserts n (1-9) 1lines prior to the line containing the
current cursor position, irrespective of the column. Only
whole lines can be inserted.

Delete (Kill) Lines

Deletes n (1-9) lines including the 1line containing the

current cursor position. Only whole lines can be deleted
using this command.

4 - 31

An alternative method of forcing spaces within named fields is by use of the
underline which is designated for this purpose. Use of the underline
character in a field results in an actual space in the corresponding
position in the generated VALUE clause,

If it is required to change the designated character from underline to
something else (presumably because there is a requirement to generate VALUE

ll_") ,

Mx

Sn

the command M is used as follows:

Change Default "space"

The Mx command changes the default character (underline) to

that

NOTE:

File

This

specified by x.

If the space character () itself is specified this will
force generation of named fields for the entire screen
without any FILLER's.

Output Control Command

command is not available if Option G (for Index Program)

is specified at screen I02,

S (or S0) cancels any other Sn commands in effect at the

time.

Sl

s2

S3

suppresses DDS (& CHK) text generation for this Work
Screen. Generation of this text resumes for the next
Work Screen unless the same command is repeated in the
next phase.

suppresses Screen Image (Snn) text generation for this
Work Screen. Commonly used to suppress Screen Images of
just variable data fields. Again the effect only lasts
for the current phase.

results in the user being given the opportunity to
override the default Screen Image file identifier for
the current Work Screen. Normally if a file already
exists with the default identifier the user is given the
option of overriding it. If he rejects this option he
is prompted for an alternative file identifier. This
command forces the alternative file identifier to be
requested even when no file exists with the default
identifier.

4 - 34

Users can check the extents of the fields. For numeric fields they can also
check that only numeric characters may be entered, and the effect of
entering the left zero fill character ".". (Use of the "." character is
described in the CIS or L/II COBOL Language Reference manuals under The
ACCEPT Statement).

On other than the first pass through the sequence of screens the previously
entered data is redisplayed before the ACCEPT is issued.

If the variable data screen includes numeric edited fields, the ACCEPT for
the screen is followed by a corresponding DISPLAY to show the effect of the
editing or normalisation performed by the CIS or L/II COBOL rum time
systems. Note that the normalised fields are not automatically echoed to
the CRT.

CHECK~-OUT COMPLETION

After the entire sequence of screens has been passed, the Check-Out program
displays:

CHECK-OUT completed
Repeat? [N] (Y=Yes)

If it 1s required to repeat the sequence of screens, Key Y and press RETURN.

Otherwise simply press RETURN to take the default to terminate the program.

4 - 44

APPENDIX A
INITIALISATION SCREENS

The Initialisation screens I0l and I02 shown below are displayed automatically
at Initialisation Phase (See Chapter 2).

INITIALISATION PHASE STREEN 181

FORNGE FRRAKETERS:
[ATA-HHE & FILE-HAME. [1 (§-6 alphanumeric

[RT lines [241 (¢ or &3 or 243

SPECIAL-HAKES

URH when conplete

FoRNS2 ¥1.3 INITIALISATION PHASE

FILES T0 BE CREATED:
FILE COMBIKATIONS [l

DEVICE/DIRECTORY PREFIX (8-48 Chars) [

Press RETURN vhen cosplete

4 - 72

APPENDIX B

WORK SCREENS

The Work Screen WOl shown below is displayed at the start of the Work Phase.
Work screen W02 can be summoned by the F command (See Chapter 3).

FORNS2 ¥1.3 SUREEN Vet

WRK SCREEN SELECTION:

STREEN TYPE [A1 (R = Fixed text on clear screen)
(B = Fixed text on last screen)
(C = Yarizble data redefines last screen)
(D = Yariable data vithout redefinition)
= Conplete this FORKS run)

Fixed Text allows: fll characters
Varisble Data allovs: X or Y to define alphanuseric fields

9 or 8 to define nuseric fields
edit chars to define nuseric edit fields

Press RETURH vhen cosplete

FORNSe V1.3 WORK' PHASE STREEN vee
FOREGROUKD/BALKEROURD OPERATIONS:

CPTION [1 Re-enter EDIT KODE)

Clear FOREGROUND)

Clear EACKCROUND)
Nerge BACKGROUND into FORECROMD)
Kerge FOREGROUKD inte BACKCROUE)
Nerge screen inage into FORECKLND)
Nerge screen inage into BACKCROUMD)

FOREGROURD)

y BACKGROUND)
sCreen inage)

(H&1&J display until RETURN presced)
FILE-RAKE [G 1
Fress RETURH when conplete L

HOTE:

4 - 74

APPENDIX C
HELP SCREENS

The four screens contained in this Appendix (HOl to HO4) can be summoned for
display by the Operator keying ? from Command Mode at any time. They are
intended for advisory purposes only. The command ?n (where n is the number
1 to 4 corresponding to the screen number HOn) summons a particular Help
Screen.

FORS2 ¥1.3 HELP SLREEN SN W

CEMERAL COMRAKD SUNNARY:

SPACE = Process lhe uork SCreen
Re-enter EDIT wode
Display the next HELP screen
Display the nth HELP screen
Re-enter WORK PHASE screen celection
Terninate FORMS run imediately
Position comnands at EDIT mode cursor
Indicate Index Fora's data area start

Wonomonoa o

4 DG — R

WOTE: SPCE is the cosmand to process the EDIT mode screen

HELP option [

. = Re-enter EDIT node) :
? = Display next HELP screen)
I = fbandon FORMSE run imsediately)

Press RETURH vhen coaplete

FORNS2 V1.3 HELP: SCREEN STREEN Hie

ATION CONAHD SUKMARY:
i Jl F = Iuoke ENECROBDBAOKHIOND il
Fx = Invoke FOREGROUND/BACKEROUND option *x*
= Turn on autonatic WORK ccreen preparation
(Il = Turn off autonatic NORK screen preparation
[n = Insert n racef at cursor position
[in = Delete n chars al cursor position
In = Insert n blank lines before cursor line
kn = Delete n lines including cursor line
fin = Overvrite n lines vith data of cursor line
Un = Move cursor up n lines
¥n = Move cursor down n lines

HELF option [= Re-enter EDIT node)
T = [isplay next HELF screen)
= ﬂbandc-n FORNSZ run imsediately)

Precs RETURK vhen conplete

4 - 76

FORRS V1.3 HELP SCREEN STREEN 13

FROGRANING CORNAND SUKNARY: : :

6 = Give datanames screen coordinates suffix

61 = Give datanames sequential nusber suffiy

Jn = Allov up to n-consec. spaces in fixed text

Kx =1 terirel ' & 'space*
ancel previous Sn comsand E
nhibit 0D & CHK output &t next processing
nhibit Snn output at next processing
Proapt for Snn file-name at next processing

ie edit ODS cutput at next proces:

Display cursor positicon coordinates

HELF option [] = Re-enter EDIT mode)
{* = Dlisplay next HELP screen)
{1 = fbandon FORNSZ run imsediately)

Press RETURK. when conplete

HELP SCREEN STREEN W4

¥ = Position cursor to current vindow start

¥l = Start vindow at cursor line

= End vindov at cursor line

= Start vindov at cursor line, no delin's

= End vindow at cursor line, no delin's

= Display start vindoy deliniters

= Display end vindow deliniters :

= Re-display data overwritten by start delin's
= Re-display data overwritten by end de]in's
= Position cursor 1o current vindov

't
H
1]
¥
v
8
¥

HELP option 1 = Re-enter EDIT mode)

(
(? = Display next HELP screen)
(1 = fhandon FORNS? run imsediately)

Press RETURH vhen cosplete

R

4 - 77

FORMS-2 CHECK-QUT PROGRAM RUNNING

The Check-Out program that enables you to check your fixed text and variable
data fields can be loaded immediately after compilation by the general
command :

B>RUN basename.INT<<

In the sample runs in Chapters 7 and 9, basename is, of course, DEMOl and
DEMO2 respectively.

To be able to load the Check-Out program directly in subsequent use, the
following general command is entered:

B>RUN = basename.INT<<

Thereafter the general command following can be used to load the Check-Out
program: '

B>basename<<

FORMS~-2 INDEX PROGRAM COMPILATION

To enable the Index program that processes an indexed sequential data file
from your FORMS-2 screens to be compiled the following general command is
entered: v !

B>COBOL basename,GEN COPYLIST<<

FORMS~2 INDEX PROGRAM RUNNING

The Index program that processes an indexed sequential data file from your
FORMS~-2 screens can be loaded immediately after compilation by the general
command:

B>RUN basename.INT<<

In the sample run in Chapter 9 basename is, of course, DEMO2.

To be able to load the Index program directly in subsequent use, the
following general command is entered:

B>RUN = basename.INT<<

Thereafter the general command following can be used to load the Index
program:

B>basename<<

4 -179

Lt

Las

|

ACORN
G()!M PUTER

Acorn Computers Limited, Fulbourn Road, Cherry Hinton, Cambridge CB1 4JN, England
Printed by Saunders & Williams (Printers) Ltd, Croydon, Surrey ;

I EREEREEEREE R R R RS BB NN NEISE R

e A

3

